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Abstract:

In the current context of Solvency II, insurance companies are required to implement demanding business
risk management systems. An important aspect of this risk management is the problem of technical provisions in
non-life insurance and, as such, it is in the interest of insurers to calculate the prediction error that has occurred
when using methodology to estimate a company’s future payments. Furthermore, the predictive distribution of the
fitted values, which is descriptive of the risk, allows us to estimate, for example, its Value at Risk at a given confi-
dence level. In this paper we focus on the application of generalized linear models to the amounts of claim losses
of a run-off triangle. In order to achieve error distribution, a parameter dependent parametric family is assumed,
along with the logarithmic link function. The parametric family has as particular cases the Poisson, the Gamma
and the Inverse Gaussian distributions. The particular case which assumes an (over-dispersed) Poisson distribu-
tion with the logarithmic link is widely known because it offers the same provision estimation as the deterministic
Chain-Ladder method. In this study we develop formulas of the prediction error of future payments by calendar
years for the general parametric family. This allows us to perform calculations that consider a financial environ-
ment, whether employing analytical formulation or bootstrap estimation. In practice, the presented formulations
allow a determination to be made of the present value of the incurred but not reported claim of future payments
including a risk margin with statistical significance.
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Provisions for claims outstanding, incurred but not reported, with generalized linear models

Resumen:

El actual contexto de Solvencia Il requiere una exigente gestion empresarial del riesgo de las Entidades
Aseguradoras. En el problema de cdlculo de provisiones técnicas en seguros de no-vida es de interés calcular el
error de prediccion cometido con la metodologia utilizada para la estimacion de los pagos futuros de la Entidad.
Ademds, la distribucion predictiva de las estimaciones, que es descriptiva respecto del riesgo, permite obtener,
por ejemplo, su valor en riesgo a un nivel de confianza fijado. En este trabajo nos centramos en la aplicacion de
los modelos lineales generalizados a las cuantias de siniestros de un tridngulo de desarrollo. Asumimos para la
distribucion del error una familia paramétrica dependiente de un pardmetro, junto con la funcion de enlace lo-
garitmica. La familia paramétrica tiene como casos particulares las distribuciones de Poisson, Gamma e Inversa
Gaussiana. Es conocido el caso particular en que se asume una distribucion de Poisson (sobredispersa) junto con
el link logaritmico, que ofrece la misma estimacion de provisiones que el método determinista Chain-Ladder. En
este estudio desarrollamos las formulas del error de prediccion de los pagos futuros por afios de calendario para
la familia paramétrica general, que nos permiten realizar cdlculos teniendo en cuenta un ambiente financiero,
tanto para el caso de utilizar formulacion analitica como para el caso de realizar estimacion bootstrap. En la
prdctica, las formulaciones presentadas nos ponen en disposicion de poder calcular el valor actual de los pagos
futuros para siniestros pendientes incluyendo mdrgenes de riesgo con significado estadistico.

Palabras clave:

Provisiones técnicas, modelo lineal generalizado; afio de calendario, Solvencia II.
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1. INTRODUCTION

This paper takes a similar starting point to that of Boj et al. (2014) in that it considers a
portfolio of risks and assumes that each claim is settled either in the accident year or in the
following k development years. It then considers a family of random variables {C,, } o)’
where ¢, is the amount of claim losses of accident year i which is paid with a delay of j
years and hence in development year j and in calendar year i+; . ¢, refers to the incremental
loss of accident year i and development year j and it is assumed that these incremental
losses c, are observable for calendar years i+j <k and that they are collected in a run-off

triangle as in Figure 1.

Figure 1

Run-off triangle with incremental losses

Accident Development year
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Source: Own elaboration.

In the run-off triangle, the numbers for year of origin i are grouped into rows while
those for development year j are grouped into columns. The numbers on the antidiago-
nals with i+j = ¢ denote the payments that were made in the calendar year ¢. The incre-
mental losses are unobservable for calendar years i+j > k + / and are thus very difficult
to predict.

There are various kinds of incurred but not reported (IBNR) claim provisions which are
of interest. The provisions for the different accident years i = 1,...,k are obtained by adding
the future incremental losses predicted in the corresponding row of the square:

k

P = Z & ()
J=k—-i+l
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Provisions for claims outstanding, incurred but not reported, with generalized linear models

The total provision is calculated by adding all the future incremental losses predicted in
the bottom-right part of the run-off triangle:
k k
Py 3 4 2)
=1 j=F=i+l

And the future payments for the different calendar years ¢ = k + 1,...,2k are obtained by
adding the incremental losses that were made in the future calendar years, i.e., the values
of the same against-diagonal 7 :

k
FP=Y¢_ .. 3)
1 .#E_k 1=j.J

J

The principal focus of this paper is to calculate the present value of the future payments
for the different calendar years, taking into account the Solvency II Directive (see Parla-
mento Europeo y Consejo de la Union Europea 2009, Albarran and Alonso 2010, Moreno
2013). In Solvency 11, it is clearly stated that the best estimate of the technical provisions
must be calculated by including the time value of money, which is to say, that they must
include the expected present value of future payments. Calculating payments by calendar
year allow us to work in a financial environment because each amount is situated in the cor-
responding future calendar year. In order to consider a conservative scenario Solvency II
recommends adding a risk margin to the best estimate to obtain a correct Solvency Capital
Requirement (SCR). If possible, the SCR should also derive directly from the probability
distribution forecast generated by the statistic applied model, using the Value at Risk (VaR)
measure.

Section 3 describes two means of determining an adequate Solvency Capital Require-
ment. While the first of these consists of adding a percentage of the prediction error to the
future payments by calendar years, the second consists of directly using the estimated VaR
of the predictive distribution of the future payments by calendar years for a given signifi-
cance level.

A generalized linear model (GLM) is asssumed (see, e.g., McCullagh and Nelder 1989;
Boj et al. 2004; Boj and Costa 2014) to model the incremental losses of the run-off triangle.
The parametric family of error distributions for the variance function is assumed

V(“i/ ) =u, 4)

named “power variance function”, which depends on parameter 6. This parametric
family has as particular cases: the Poisson distribution when 6 =1; the Gamma distribution
when 6 =2; and the Inverse Gaussian distribution when 6 =3. Assuming (4) the mean and
the variance of the GLM are

#;=E[¢;] and Var[cij]=(¢/WJ)V(‘L‘U)=(¢/WU)M;’ o)

where @ is the dispersion parameter and w,. are a priori weights of the data, assumed
equal to one, w; = 1, for the incremental claim losses of a run-off triangle. The estimation
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process of this kind of GLM, which does not have a distribution in the exponential family,
uses extended quasi-likelihood equations. A detailed description of the fitting algorithm
may be found in McCullagh and Nelder (1989).

Several actuarial methods which are frequently used to complete a run-off triangle
can be described by a GLM. Among these are the Chain-Ladder method, the arithmetic
and geometric separation methods, and de Vylder’s least squares method. In particular,
the classical Chain-Ladder deterministic method can be derived from a GLM assuming
(over-dispersed) Poisson errors and logarithmic link function (see, e.g., Haberman and
Renshaw 1996; England and Verrall 1999, 2002 and 2006; England 2002; Kaas et al. 2008;
Boj et al. 2014).

Assume for the GLM the logarithmic link function

log =1 (6)

Next, we can define log ()= co+ai+,3j, a GLM in which the responses c, are modelled
as random variables with variance function (4), with a logarithmic link function (6) and
with linear predictor

n; =C+a+p;, %)

where «, is the factor corresponding to the accident year i = 1,...,k and ,Bj is the factor
corresponding to the development year j = 1,...,k. The ¢, value is the term corresponding
to the accident year 0 and development year 0. In the Poisson case, where @ =1 is as-
sumed, over-dispersion is taken into account by estimating the unknown scale parameter
@ as a part of the fitting procedure.

The predicted values él.j of the IBNR provisions (1), (2) and future payments (3) are
estimated from

¢ =exp(éo+0?l.+/3’j). (8)

The prediction error of (8) assuming (4) is studied for the accident year provisions (1)
and the total provision (2) in, e.g., England and Verrall (1999, 2002, 2006) and England
(2002). This study has been extended to the IBNR future payments by calendar years (3)
in Boj et al. (2014) and Espejo et al. (2014) but only for the particular case in which the
(over-dispersed) Poisson distribution is assumed (a case that gives the same estimation of
provisions as the deterministic Chain-Ladder method). The novelty of the current study is
that the formulas of the prediction error for the future payments by calendar years (10) and
(14) of Boj et al. (2014) are extended to the general parametric family (4).

The paper is organized as follows. Section 2 develops formulas for the prediction error
of a GLM for the future payments by calendar years (3) assuming the parametric family of
distributions (4). Section 3 applies these formulas to real data and a practical demonstration
of Solvency Directive II is given by working with the future payments by calendar year
studied in Section 2 (using an interest rate and including a risk margin to the provisions).
In Section 4 the main conclusions of the paper are presented while Sections 5 and 6 contain
acknowledgments and references.
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Provisions for claims outstanding, incurred but not reported, with generalized linear models
2. PREDICTION ERROR FOR FUTURE PAYMENTS BY CALENDAR YEARS

Consider a random variable ¢, and a predicted value él_j. The mean squared error
(MSE) of prediction is: '

E[(cy -é,.j)z] =E[((cﬁ -E[¢,])- (4, —E[cﬁ]))z] .
Plugging in ¢, instead of ¢, in the final expectation and expanding gives:
E[(c/ —éi,)z] zE[(c,y —E[cij])z] —2E[(c,j -E[e])(& —E[c/])] +E[(c] —E[c]])z] (10)
The assumption that future observations are independent of past observations gives:
E[(cl.j —é,.j)z] zE[(cij —E[cl.j])z} +E[(él.j —E[cj])z] an

Thus, the prediction variance is the sum of process variance and E{(c‘, —E[c,,]ﬂ =Var[c¢]
the estimation variance E[(a,,. —E[é,,])z] =var[¢,] . The MSE of predictions is given by:

€))

MSE(cy.)=E[(cl.j—é,.j)2]zVar[cy]+Var[éy]. (12)

The following can be derived by using the delta method:
2

ou,
Var (¢, | =|—=| Var(n, |- (13)
y y
&)= e Ve[ ]
In the case where the logarithmic link function ‘Lﬂ=ﬂ , and then, the MSE of predic-
tions could be approximated as: o
MSE (¢, ) = gu] + w;Var [,]. (14)

The prediction error (PE) for each prediction with 7, j = 1,...,k could thud be calculated
as the root of the MSE (14). Next, the formulas of the MSE are given for the accident year
provisions, for the total provision and for the future payments by calendar years. The PE of
those amounts could be calculated as the corresponding root.

The PE obtained when assuming the parameter dependent family of distributions (4)
for the accident year provisions and the total provision, has been studied in e.g. England
and Verrall (1999). The PE for the future payments by calendar years in the (over-dis-
persed) Poisson case has been studied in Boj et al. (2014) and Espejo et al. (2014) where it
is programmed for practitioners with RExcel. Next, the parametric family of distributions
(4) is assumed, thereby extending the formulations for the future payments by calendar
year (10) and (14) of Boj et al. (2014).

The squared PE for the accident year provisions are:
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MSE(P)= [ -B) ] E¢/A,,+H,VW [1,]e =

e

5)
= 2 gu] + 2 w;'Var [1;]+2 2 #y,145,Cov 1,1y, ]
JETok JETk Jiod 2 Tk
i+jok i+jok At
i+ >k i+ jy>k
i=1..,k
The squared PE for the total provision is:
MSE(P)=E [(P-f))'] 2 u + ' Var[n]u -
04
itjsk
. (16)
= ¥ ool > owVar[n]+2 N pu,Cov ]
it it R
VALY
And the squared PE for the future payments by calendar years are:
MSE(FR)=E[(FP/ —;/\3) S o+ Var[n, |, =
i j=lok
i+ =t
= 2 ¢yf + E ,u szr[r]//]+2 2 o, Cov[n, /‘,)7%]. )
iyl k /o j=l,. lt o) 2 =Lk
i+j=t iyt |/|"z

r=k+1..,24
Next, formulas are given for the case in which the Var [¢;] is estimated by means of
standard error (SE) of the predictive distribution of c,- The predictive distribution of ¢, is
estimated by bootstrap methodology (see Efron and Tibshirani 1998). The treatment of
the GLM and associated claims in this paper frequently involve the application of boot-
strapping residuals based on Pearson residuals (see, e.g., Boj and Costa 2014). When (4) is
assumed and w, = 1, the Pearson residuals take the expression:

g (18)
o
ij
The scale parameter 6° could be estimated by:
~\2
op 1 Py 1 (‘u _Ci/)
= I : 1
¢ n-2k-1,4 () - n-2k-1, 4. & (19)
i+js<k r+/sA

In this paper, the residuals in the bootstrap process are adjusted for the degrees of free-
dom as follows:

O (20)
! n—-2k- i

as similarly done , for the sake of compatibility, for the scale parameter 6 .
In the bootstrap process estlmatlon we have B resamples of the residuals, r., . From
(18) and (20) we isolate Cij = V,»j * [e? & +¢; for each sample, and then we estimate the

ISSN: 1131 - 6837 Cuadernos de Gestion Vol. 17 - N°2 (2017), pp. 157-174

163



164

Provisions for claims outstanding, incurred but not reported, with generalized linear models

GLM and the corresponding amounts. The B values of the estimations give the predictive
distribution of a value c”"”’ (for each value), of the accident year provisions p (for each
accident year), of the total provision P, and of the future payments by calendar years
») (for each calendar year).

From the B values it is possible to estimate the variance of the distribution as the
square of the standard error (SE) of the distribution. The SE estimated in this way replaces
the part of the estimation variance, Var [¢, ] in formulas (14), (15), (16) and (17).

Next, a description is provided of the formulatlons of the estimations of the PE, i.e., the
root of the MSE is given, for a value, for the accident year provisions, for the total provi-
sion and for the future payments by calendar years in the case of bootstrap estimation of
Var [¢,]. We denote this by PE",

The bootstrap estimations of the PE for each value are:

PEbOOl \/¢ )+ SE boo[ )2 , I’J - 1,‘__’]{ ] (21)

The bootstrap estimations of the PE for the accident year provisions are:

PE(P)= E ¢” “’+SE(P””"’)  i=1 k. (22)
/+/>4

The bootstrap estimation of the PE for the total provision is:

PE" (P)= §'e +SE(PY (23)
i,j=1,.., k
i+j>k

And the bootstrap estimations of the PE for the future payments by calendar years are:

——~ boor 2
PE" (FP) = E ¢’”f’ +SE(FP, ) , r=k+1,.24. (24)
7, 7=l Ak
i+j=t
Note that, unlike the formulas (12), (13), (14) and (15) of Boj et al. (2014), here SE of
the bootstrap distributions is not adjusted for degrees of freedom, because it is assumed
that work in the bootstrap process is completed with (20), the adjusted Pearson residuals.
If direct use were made of the Pearson residuals (18), as in Boj et al. (2014), it would be
necessary to correct the SE multiplying it by n/n(n-2k—1), where 2k+1 is the number of
parameters of model (7).

3. APPLICATION

The proposed methodology is illustrated using the triangle of Taylor and Ashe (1983)
of Figure 2 with incremental losses. This dataset is used in many texts that deal with IBNR
problems, such as those of Renshaw (1989, 1994), England and Verrall (1999) and England
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(2002). In particular, England and Verrall (1999), demonstrate (in Tables 1 and 2) the esti-
mation of provisions and the PE as a percentage of the provision estimate (i.e., the called
“coefficient of variation” in many text books and computer programs) for the accident
year and total provisions, (1) and (2). This is calculated, in cases when the over-dispersed
Poisson and the Gamma distributions are assumed using analytic formulas to calculate PE
and when the over-dispersed Poisson distribution is assumed using bootstrap methodology
for the estimation of PE.

Figure 2

Run-off triangle with 55 incremental losses

Accident Development year
year

0 1 2 3 4 5 6 7 8 9

357848 | 766940 | 610542 | 482940 | 527326 | 574398 | 146342 | 139950 | 227229 | 67948

352118 | 884021 | 933894 | 1183289 | 445745 | 320996 | 527804 | 266172 | 425046
290507 | 1001799 | 926219 | 1016654 | 750816 | 146923 | 495992 | 280405
310608 | 1108250 | 776189 | 1562400 | 272482 | 352053 | 206286
443160 | 693190 | 991983 | 769488 | 504851 | 470639
396132 | 937085 | 847498 | 805037 | 705960
440832 | 847361 | 1131398 | 1063269
359480 | 1061648 | 1443370
376686 | 986608
344014

O |00 ||\ | [ AW |— |O

Source: Taylor and Ashe (1983)

This Section completes the analysis conducted by England and Verrall (1999) by in-
cluding the study for the future payments by calendar years (3). Poisson (over-dispersed)
and Gamma distributions are assumed and an estimation is made of the PE with analytic
formula and with bootstrap (using size B = 1000 resamples). Both distributions are par-
ticular cases of the parametric family (4) described in this paper: when © =1 we have the
Poisson distribution and when & =2 we have the Gamma distribution. In addition, com-
putations are made with the R software (R Development Core Team 2015) and models are
fitted with the function glm of the stats package for R. Results are given in Tables 1 to 8.

The future payments by calendar years enable to work in a financial environment and
to calculate the best estimate of provisions. The present value of the future payments by
calendar years can be determined by taking into account the time value of money (and
thus, following the Solvency II Directive). The present value constitutes the “today real
provision” of an insurance company. This Section provides an example which assumes a
1.5% fixed annual interest rate for the future nine years. Additionally, a risk margin can be
added to calculate the SCR.

Three possibilities are presented to show how to calculate the best estimate in the con-
text of Solvency II:

1) In the first of these, the present value of the future payments by calendar years is
computed without any risk margin:
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2k , —(t—k)
[BNRactual = Z Fl)t (1 +Il ) 4 (25)
t=k+1

where 1} for t = k + 1,...,2k are the annual interest rates for each of the next calendar
years taken into account in the run-off triangle.

2)  In the second, the present value of the future payments by calendar years is com-
puted plus a fixed percentage, J, of the PE. In this way a risk margin is included for each
calendar year equal to the fixed percentage of the corresponding PE. In the application of
this Section 25% of the PE is added, i.e., d =0.25. Use of the analytic formula (17) to esti-
mate the MSE(FT,) derives:

2k

IBNR,, = Z (F7 + o JMSE(FR))(1+1;) "™ (26)
t=k+1

And use of bootstrap estimation of the PE with formula (24) to estimate the PE"
(FT,), derives:
2k

IBNR,,,,, = Z (FR+oPE™ (FR))(1+1 )’("k) : @7)
t=k+1

3) And in the third possibility, the present value of the values at risk, VaR, is com-
puted at a fixed confidence level a for each calendar year predictive future payments dis-
tribution PE**";

actual
r1=£+1

24 —~ boot _( /- 4»)
BVR,,,, = > VaR, (FP, )(1 + /1’) . (28)

A risk margin is thus added because the expected mean of the predictive distributions
(which must be similar to the future payments by calendar years) is replaced by the quantile
a of its predictive distribution. The example given in this Section uses the 99.5% quantile
of predictive distribution of the future payments by calendar years. Note that this way of
adding a risk margin is only available when estimates are made by bootstrapping the pre-
dictive distribution of future payments.

Table 1 calculates the future payments by calendar years, the prediction errors and the
coefficients of variation (i.e., the proportion of the PE over the amount estimate, in per-
centage) for the over-dispersed Poisson distribution using analytic formula to compute the
PE as the root of the MSE (17). In Table 2 we have the same computations for the Gamma
distribution.

Note that in Table 1, in the second column, the estimations obtained of the future pay-
ments by calendar years are the same as those obtained with the Chain-Ladder determin-
istic method. The reason for this, as explained in the paper, is because when an over-dis-
persed Poisson distribution is assumed with the logarithmic link function, the estimation
with the GLM coincides with that of the Chain-Ladder method.

In Table 3, the means and the standard deviations of the predictive distributions are
calculated for the future payments by calendar years, the prediction errors (24), and the
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coefficients of variation for the over-dispersed Poisson distribution using bootstrap meth-
odology with B = 1000 resamples. Table 4 shows the same computations for the Gamma
distribution.

In Table 5, calculations are shown for the present value of the future payments by
calendar years as in (25), and the present value of the future payments by calendar years
plus 25% of the prediction error using analytic formula as in (26), assuming in both cases
the over-dispersed Poisson distribution. Table 6 provides the same computations for the
Gamma distribution. In all cases it is assumed that there is a 1.5% fixed annual interest rate
for the future nine years.

In Table 7, calculations are shown for the present value of the future payments by calen-
dar years as in (25); the present value of the future payments by calendar years using boot-
strap methodology (with 1000 resamples) plus 25% of the prediction error as in (27); and
the present value of the Value at Risk as in (28) with a confidence level of 99.5%, assuming
the over-dispersed Poisson distribution. In Table 8, the same computations are shown for
the Gamma distribution. In both cases a 1.5% fixed annual interest rate is assumed.

Table 1

Prediction errors for over-dispersed Poisson using analytic formula?

Calendar year Payment Prediction error Coefficient of variation
10 5226535.8 747369.6 14.30 %
11 4179394 4 710144.6 16.99 %
12 3131667.5 644139.5 20.57 %
13 21272719 479125.6 22.52 %
14 1561878.9 404967.7 2593 %
15 11777437 3642949 3093 %
16 744287 4 294424.6 39.56 %
17 445521.3 250986.8 56.34 %
18 86554.6 108268.8 125.09 %

Source: Own elaboration.

Table 2

Prediction errors for Gamma using analytic formula®

Calendar year Payment Prediction error Coefficient of variation
10 5096855.3 847281.6 16.62 %
11 4050001.5 749549 .8 18.51 %
12 3064407.7 628141.0 20.50 %
13 2078010.5 431885.8 20.78 %

2 Future payments by calendar years, prediction errors and coefficients of variation for the over-dispersed Poisson
distribution using analytic formula.

* Future payments by calendar years, prediction errors and coefficients of variation for the Gamma distribution
using analytic formula.
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14 1510392.7 345880.7 22.90 %
15 1095402.7 292255.7 26.68 %
16 692118 .4 220057.8 31.79 %
17 4165399 181226.5 4351 %
18 820759 47918.1 58.38 %
Source: Own elaboration.
Table 3

Prediction errors for over-dispersed Poisson using bootstrap*

Calendar year | Mean payment Star}dgrd Prediction error | Coefficient of variation
deviation
10 5262187.6 748660.0 756563.2 14.48 %
11 4206004.9 718618.2 721067.3 17.25 %
12 3153556.8 653134.1 6497532 20.75 %
13 21392448 504395.7 487995.9 22.94 %
14 1562523 .4 408073.2 411005.7 2631 %
15 1178586.1 364102.8 365547.7 31.04 %
16 771451.6 3029199 292974 4 39.36 %
17 455633.0 250906.3 254458.2 57.11 %
18 91579.0 104329.2 107988.8 124.76 %
Source: Own elaboration.
Table 4

Prediction errors for Gamma using bootstrap®

Calendar year | Mean payment Star}dgrd Prediction error | Coefficient of variation
deviation
10 5096897.2 1017.5 652964.8 12.81 %
11 4050047.9 1014.2 545647.9 1347 %
12 3064465.1 920.9 434825.7 14.19 %
13 2078021.4 694.1 297581.3 14.32 %
14 1510393.3 580.7 233914.7 1549 %
15 1095419.1 493.1 194252.2 17.73 %
16 6921304 3959 142601.5 20.60 %
17 416548.9 3427 109441.6 26.27 %
18 82080.9 152.7 26649.2 3247 %

Source: Own elaboration.

4 Future payments by calendar years, standard deviations, prediction errors and coefficients of variation for the

over-dispersed Poisson distribution using bootstrap methodology with 1000 resamples.

> Future payments by calendar years, standard deviations, prediction errors and coefficients of variation for the
Gamma distribution using bootstrap methodology with 1000 resamples.
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Table 5

Present values of the future payments for over-dispersed Poisson using analytic formula®

Deferral (in Payment +
Calendar year years)( Payment 0.25 Prgdiction error
10 1 5226535.8 5413378.2
11 2 4179394 4 4356930.6
12 3 3131667.5 32927024
13 4 2127271.9 2247053.3
14 5 1561878.9 1663120.8
15 6 1177743.7 1268817 .4
16 7 7442874 817893.5
17 8 4455213 508268.0
18 9 86554.6 113621.8
Present value 17873967 18820197
Source: Own elaboration.
Table 6

Present values of the future payments for Gamma using analytic formula’

Deferral (in Payment +
Calendar year years)( Payment 0.25 Prgdiction error
10 1 5096855.3 5308675.7
11 2 4050001.5 4237389.0
12 3 3064407.7 32214429
13 4 2078010.5 2185982.0
14 5 1510392.7 1596862.9
15 6 1095402.7 1168466.7
16 7 692118.4 7471329
17 8 4165399 461846.5
18 9 82075.9 94055 .4
Present value 17310125 18199962

Source: Own elaboration.

 Present values of the future payments by calendar years and of the future payments by calendar years plus 25%
of the prediction error for the over-dispersed Poisson distribution using analytic formula and assuming a 1.5% fixed
annual interest rate.

7 Present values of the future payments by calendar years and of the future payments by calendar years plus 25%
of the prediction error for the Gamma distribution using analytic formula and assuming a 1.5% fixed annual interest
rate.
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Table 7

Present values of the future payments and of the Value at Risk for over-dispersed Poisson
using bootstrap®

Deferral Payment +
Calendar year (in years) Payment 0.25 Prgdiction Error VaRyys
10 1 5226535.8 5415676.6 7417055.0
11 2 4179394 4 4359661.3 6364764.7
12 3 3131667.5 3294105.8 5207534.8
13 4 2127271.9 2249270.9 3682095.3
14 5 1561878.9 1664630.3 2735533.8
15 6 1177743.7 1269130.6 2209257.2
16 7 7442874 817531.0 1841310.7
17 8 4455213 509135.8 1262432.7
18 9 86554.6 113551.8 4734123
Present value 17873967 18830614 29688278
Source: Own elaboration.
Table 8

Present values of the future payments and of the Value at Risk for Gamma using bootstrap’

Calendar year De;ee::lsl)(m Payment 025 preyci?ci?gr:rError VaR,,
10 1 5096855.3 5260096.5 5099652.6
11 2 4050001.5 4186413.5 4052656.1
12 3 3064407.7 3173114.1 3067038.9
13 4 2078010.5 2152405.9 2079754.3
14 5 1510392.7 1568871.3 1511867.6
15 6 1095402.7 1143965.8 1096662.3
16 7 6921184 727768.8 693145.23
17 8 416539.9 443900.3 417478.6
18 9 82075.9 88738.2 824572

Present Value 17310125 17938348 17324230

Source: Own elaboration.

It may be observed in Tables 1 to 4 that when an analysis is made of the future pay-
ments by calendar years, in general and for this dataset, lower coefficients of variation are

8 Present values of the future payments by calendar years, of the future payments by calendar years plus 25% of
the prediction error and of the Value at Risk with a confidence level of the 99.5% for the over-dispersed Poisson
distribution using bootstrap methodology with 1000 resamples and assuming a 1.5% fixed annual interest rate.

° Present values of the future payments by calendar years, of the future payments by calendar years plus 25% of

the prediction error and of the Value at Risk with a confidence level of the 99.5% for the Gamma distribution using
bootstrap methodology with 1000 resamples and assuming a 1.5% fixed annual interest rate.
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obtained for © =2 , the case of the Gamma distribution, if the results are compared with
those of the over-dispersed Poisson where © =1. And, specifically, it becomes more evi-
dent when we compare Tables 3 and 4, the case in which an estimation is made of the real
distribution by bootstrap. The same pattern may be observed in the results for accident year
provisions and total provisions in Tables 1 and 2 of England and Verrall (1999).

As may be seen, it preferable to use the bootstrap estimations (21) to (24) of the PE
instead of the analytic estimation formulas (14) to (17), because in the run-off triangle there
is usually a small dataset and the data do not always follow the hypothesis assumed in the
GLM. It is thus preferable to simulate the real distribution of our portfolio than apply the
theoretical formulations of the distribution. This will help to obtain more accurate informa-
tion on future losses incurred by insurance companies.

It may be observed in Tables 5 to 8 that the amount of the “today real provision”, i.e.
the present value, depends on the added risk margin. While the lower amount always repre-
sents the simple present value the simple present value (25), the amount will vary depend-
ing on the added percentage & for formulas (26) and (27), and depending on the confidence
level o for (28). As might be expected, higher & (or o ) will obtain higher present values,
as will be seen below.

Some additional present values are calculated with formulas (27) and (28) for the
Gamma model. First, some percentages 6 are used to complete the results of Table 8,
with 6={0.1,0.4, 0.5, 0.95}, and the corresponding present values of 17561414, 18315283,
18566572 and 19697375, respectively, in monetary units. Second, the present values are
calculated with formula (28) and taking into account the confidence levels for the VaR:
a={75%, 85%, 90%, 95%} The corresponding present values are 17313858, 17315730,
17317046 and 17319257, respectively, in monetary units.

Finally, Figure 3 shows the predictive distributions of the future payments by calendar
years for the calendar years 13 and 14 to illustrate graphically the empirical results of the
bootstrap process. Calculations of the percentiles for the VaR or the SE of formula (24) are
drawn from these distributions.

Figure 3

Histograms of the predictive distribution of the future payments with Gamma'
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Source: Own elaboration.

1% Histograms of the predictive distribution of the future payments for the calendar years 14 and 15 for the data of
Taylor and Ashe (1983) assuming a GLM with Gamma distribution.
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4. CONCLUDING REMARKS

This paper has deduced the formulas (17) and (24) related to the PE for the future pay-
ments by calendar years (3) for the GLM in the general case of the parametric distribution
family (4) assuming the logarithmic link. Studying the use of calendar years for the IBNR
provisions problem has provided results that enable the actuary to take decisions regarding
the best estimate of the technical provisions and the risk margin, and, therefore, regarding
the financial inversions of the SCR of the insurance companies in the current context of
Solvency II. As regards the best estimate, this paper proposes that the present value (25)
be calculated directly by taking account of the time value of money. Additionally, it is
proposed that a risk margin be included by adding a percentage of the prediction error of
the future payments by calendar years, as seen in formulas (26) and (27) or by calculating
the VaR of the predictive distribution of the future payments by calendar years, as seen
formula (28).

While the analysis in the paper is illustrated with the triangle of Taylor and Ashe
(1983), the theoretical and practical results complement the study of the use of GLM in the
problem of provisions in other actuarial studies where the analysis is done only with the
accident year provisions and total provisions (1) and (2), such as those of Haberman and
Renshaw (1996), England and Verrall (1999), England (2002), England and Verrall (2002,
2006) and Kaas et al. (2008). In addition, there has been further analysis of the future
payments by calendar years (3) for the Poisson case, conducted in Boj et al. (2014) for the
general parametric family (4).
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