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Abstract:

The present study aimed at investigating the existence of long memory properties in ten developed stock 
markets across the globe. When return series exhibit long memory, the series realizations are not independent 
over time and past returns can help predict future returns, thus violating the market efficiency hypothesis. It poses 
a serious challenge to the supporters of random walk behavior of the stock returns indicating a potentially pre-
dictable component in the series dynamics. We computed Hurst-Mandelbrot’s Classical R/S statistic, Lo’s statistic 
and semi parametric GPH statistic using spectral regression. The findings suggest existence of long memory in 
volatility and random walk for logarithmic return series in general for all the selected stock market indices. Fin-
dings are in line with the stylized facts of financial time series.
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Resumen:

El presente estudio pretende investigar la existencia de propiedades de memoria larga en diez mercados de 
valores de distintos países desarrollados. Cuando las series de rendimientos exhiben memoria larga, estas series 
no son independientes del tiempo y los rendimientos pasados pueden ayudar a predecir rendimientos futuros, 
violando por tanto la hipótesis de eficiencia de los mercados. Esto plantea un serio desafío a los que defienden 
que los rendimientos siguen un camino aleatorio, indicando un componente potencialmente predecible en la 
dinámica de las series. Hemos calculado el estadístico clásico de Hurst Mandelbrot (R/S), el estadístico de Lo 
y el estadístico semiparamétrico GPH utilizando un método de regresión espectral. Los resultados sugieren la 
existencia de memoria larga en la volatilidad de los rendimientos y un paseo aleatorio para los logaritmos de 
las series, en general para todos los índices de mercado seleccionados. Los resultados están en línea con hechos 
contrastados para series temporales financieras. 
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1.  Introduction

The possible existence of long memory in stock market returns has imperative conse-
quences for market efficiency and random walk behavior of the stock returns. The studies 
related to long range dependence include detection of long memory in the data, statisti-
cal estimation of parameters of long range dependence, limit theorems under long range 
dependence, simulation of long memory processes, and many others. Research on long 
memory processes were possibly stimulated by Hurst (1951) who quantified long memory 
using Rescaled Range analysis which considers the scaling behaviour of the range of par-
tial sums of the variable under consideration. Studies on long memory processes in finance 
possibly originate from Mandelbrot (1971) suggesting that in the presence of long memo
ry, pricing derivative securities with martingale methods may not be appropriate. Man-
delbrot (1997) contains many of the early papers on the application of the Hurst exponent 
in financial time series. Since those days, the application of the long memory processes 
in economy has been extended from macroeconomics to finance. A good survey of the 
econometric approach to long-memory is given in Baillie (1996). Long-memory properties 
of financial time series indicates linear pricing models and statistical inferences about as-
set pricing models based on standard testing procedures may not be appropriate (Yajima, 
1985). Several authors have claimed that the time series of stock returns for stock prices or 
indices display long-memory (Mandelbrot, 1971, Greene and Fielitz, 1977). However, Lo 
(1991) criticised the statistical R/S test used by Mandelbrot and Green and Fielitz on the 
ground that after accounting for short range dependence, it might yield a different result 
and proposed a modified R/S test statistic. However, Willinger et al. (1999) showed that the 
modified R/S test shows a bias towards rejection of long range dependence by rejecting the 
null hypothesis of short-memory when the degree of long-memory is not very high. Since 
financial data typically display low degree of long-memory, they claim that the result of Lo 
(1991) may not be conclusive.

It is well known in finance world that volatility is characterized by long memory. The 
consensus began to take shape with reports of hyperbolic decay in the autocorrelations of 
stock index volatilities (Ding et al., 1993) but gained momentum as fractionally-integrated 
GARCH models made inroads into the volatility modelling literature.There are many stu
dies from developed markets showing that conditional volatility of returns on asset prices 
display long memory or long range dependence. Andersen and Bollerslev (1997; 1998), 
Ding, et al. (1993) and Breidt et al. (1998) find evidence of long-memory stochastic volati
lity in stock returns, Harvey (1993) finds evidence for this in exchange rates. Liow (2006) 
investigated persistence in international real estate market return and volatility on total-
hedged and public real estate series. He finds little evidence of long memory for the return 
series, but overall long memory effect in volatility appears to be real and was less likely 
to be caused by shifts in variance for some Asia-Pacific real estate markets. These results 
led to the development of alternate models for volatility, such as Fractionally Integrated 
Generalized Autoregressive Conditional Heteroskedasticity (FIGARCH) model. Harvey 
(1998) proposed an estimation method based on the spectral approximation to the Gaus
sian likelihood and the finite sample properties of this estimator were analyzed by Perez 
and Ruiz (2001). Granger and Hyung (2004) explained long memory phenomenon of asset 
returns by structural changes in GARCH and suggested that the time series with structural 
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breaks can induce a strong persistence in the autocorrelation function and hence generate 
spurious long memory. Banerjee and Urga (2005) provide a comprehensive survey of the 
literature on both long memory and structural breaks, features of which are almost obser-
vationally equivalent.

Presence of long memory properties in stock market returns still continues since em-
pirical evidences reported in empirical studies is not strong enough but this fact has impor-
tant consequences on the capital market theories. The presence of long memory dynam-
ics cause nonlinear dependence in average asset returns. The primary implication of this 
circumstance is that return predictability is possible since an efficient market hypothesis 
is clearly rejected because stock market prices do not follow a random walk. It would also 
raise concern regarding linear modeling, forecasting, statistical testing of pricing models 
based on standard statistical methods, and theoretical and econometric modeling of asset 
pricing.

Possible existence of ‘Taylor effect’ is an interesting research area in finance. Taylor 
(1986) observed evidences of higher autocorrelations in absolute returns of assets than in 
squared returns. Ding et al. (1993) and Granger and Ding (1995, 1996) also found similar 
evidences and Granger and Ding (1995) referred this phenomenon as the ‘Taylor effect.’

The present study aimed at investigating the existence of long memory properties in 
logarithmic return, absolute return and squared return series in ten developed stock markets 
across the globe. Logarithmic return (calculated at logarithmic first difference of the index 
values) is the most common form of return used in financial terminology. While ‘squared 
return’ is universally accepted and used as measure of volatility, ‘absolute return’ is also 
used as an alternative measure of volatility. Granger (1998) notes that long memory is 
usually discussed in the context of squared returns series, but that absolute returns series 
have more interesting statistical properties, thus motivating the investigation in this study. 
Absolute returns are robust in the presence of extreme or tail movements (Davidian & Ca
rroll, 1987). Tail returns, with their generally accepted fat-tailed characteristic in financial 
time series, are of particular importance in market risk management and in associated risk 
measures such as value-at-risk and minimum capital requirements. Also absolute return 
modelling is more reliable than squared returns for the non-existence of a fourth moment 
commonly associated with financial returns (Mikosch and Starcia, 2000). There is a need 
for a more comprehensive study to make an attempt to find evidence of long memory or 
market inefficiency, more particularly, in the context of the emergence of new regulations, 
changing market micro structures in the developed markets. Moreover, it is also to be noted 
here that there remains always a natural need to vouch and verify the existing research fin
dings. We have chosen ten leading indices in the ten chosen developed stock markets. The 
study also explores the existence of Taylor’s effect in developed stock markets.

2.  Definition of long memory

The long memory describes the higher order correlation structure of a series. If a time 
series yt is a long-memory process, there is persistent temporal dependence between obser-
vations widely separated in time. Such series exhibits hyperbolically decaying autocorrela-
tions and low frequency distributions. If present, long memory has some serious signifi-
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cance into the dynamics of the system; a shock in one point of time which leads to some 
increased risk and uncertainty in the market doesn’t die down quickly if long memory is 
present. Rather, it stays on, although in a decaying fashion and affects future outcomes. 
Mathematically, if λs= cov (yt, yt+s), s=0, ±1, ±2,..., and there exist constants k and α, 
α∈(0,1) such that limkλss-α=1 then yt is a long-memory process. A long memory process 
can be regarded as a fractionally integrated process, i.e., between stationary and unit root 
process. Like a stationary process, it is also a mean reverting process with a finite memory, 
i.e., it comes back to equilibrium after experiencing a shock. But unlike an autoregressive 
stationary process, it shows a much slower hyperbolic rate of decay rather than exponen-
tial, and the process takes much larger time to adjust back to equilibrium. When a time se-
ries have unit root at level but its first-differences are stationary, it is said to be I(1) process 
(integrated of order one). A stationary process is said to be I(0) process (integrated of order 
zero). Using the same notation, long memory process is I(d) process, where d lies between 
0 and 1, i.e., a fraction. In the frequency domain, long memory financial time series have 
typical spectral power concentration near zero or at low frequencies and then it is declining 
exponentially and smoothly as the frequency increases (Granger, 1966). Long memory has 
also been called the “Joseph Effect” by Mandelbrot and Wallis (1968), a biblical reference 
to the Old Testament prophet who foretold of the seven years of plenty followed by the 
seven years of scarcity that Egypt was to experience. This in general parlance indicates that 
good times beget good times and bad times beget bad.

3.  Methodology for testing long-memory processes

The empirical determination of the long-memory property of a time series is a difficult 
since strong autocorrelation of long-memory processes makes statistical fluctuations very 
large. Thus tests for long-memory tend to require large quantities of data. In this paper 
we tested the stationary properties of all the data series using Augmented Dickey-Fuller 
(ADF) test, Phillips-Perron (PP) test. We have tried to capture the long memory property 
of financial data using classical rescaled-range (R/S) analysis (Hurst, 1951; Mandelbrot, 
1972), modified rescaled-range (R/S) analysis introduced by Lo (1991) and the spectral 
regression method suggested by Geweke and Porter-Hudak (1983). The above tests were 
applied on logarithmic return series, absolute return series and squared return series. The 
referred methods are detailed below.

3.1.  Rescaled-range (R/S) analysis

R/S analysis provides a measure of long range dependence based on the evaluation 
of the Hurst’s exponent of stationary time series introduced by English hydrologist H.E. 
Hurst in 1951. The Hurst exponent was built on Einstein’s contributions regarding Browni-
an motion of physical particles and is frequently used to detect long memory in time series. 
R/S analysis in economics was introduced by Mandelbrot (1971, 1972, 1997) who argued 
that this methodology was superior to the autocorrelation, the variance analysis and to the 
spectral analysis. Let X(t) be the price of a stock on a time t and r(t) be the logarithmic
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return denoted by
 

. The R/S statistic is the range of partial sums of deviations
 

of times series from its mean, rescaled by its standard deviation. Hence, if r(1), r(2),... r(n) 

denotes logarithmic asset returns and rn represents the mean return given by ,  
 where ‘n’ is the time span considered, the rescaled range statistic is given by 
 
 

 
where  is the maximum 

likelihood estimate of simple standard deviation: . The first term 
 

 
 
in the bracket is the maximum of the partial sum of the first k deviations of r(t) from the 
sample mean, which is nonnegative. The second term in the bracket is the corresponding 
minimum of the partial sums, which is nonpositive. The difference of these two quanti-

ties, called “range” is always nonnegative and makes the rescaled range, . The  
 
advantage of the classical R/S analysis is that the results are reliable regardless whether 
the distribution of the series is Gaussian or not. The null hypothesis of the test is that there 
is no long-range dependence in the series. This test is performed by calculating the con-
fidence intervals with respect to generally accepted significance level, and to see whether 
the rescaled range statistic lies in or outside the desired interval. The critical values for the 
above two tests are given in Lo, 1991, table II. 

A drawback of the R/S analysis is that its measure of long range dependence is affected 
by short range dependence that may be presented in the financial data. Hence we consider 
estimating modified R/S statistic proposed by Lo (1991).

3.2.  Modified rescaled-range (R/S) analysis

We conducted the modified R/S analysis suggested by Lo (1991) for long memory that 
examines the null hypothesis of no long range dependence at different significance levels. 
Lo’s modified version of the statistic takes account of short-range dependence by perfor
ming a Newey-West correction (using a Bartlett window) to derive a consistent estimate 
of the long-range variance of the time series. Lo’s modified R/S statistic, denoted by Qn is 
defined as:

where  is the Newey-West (1987) estimate of long run variance of the series defined as:
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defined as: where γj represents the sample autocovariance of order j, and ωj(q) represents 
the weights applied to the sample autocovariance at lag j (1,2,...q). ωj(q) are defined as the 
following Barlett weights:

The second term in the long run variance equation intended to capture the short term 
dependence. The lag length q used to estimate the heteroskedasticity and autocorrelation 
corrected (HAC) standard deviation is extremely crucial for modified R/S test of long 
memory. We have used bandwidth selection procedures suggested by Andrew (1991) to 
find the lag length.

3.3.  The Spectral Regression Method 

A stationary long memory process can be characterized by the behaviour of the spectral 
density f(λ) function which takes the form f(λ): c⎟1-e-iλ⎟-2d, as λ→0 with d ≠ 0, c≠ 0, d is 
the long memory parameter (or fractional differencing parameter) and 0<⎟d⎟<0.5. In order 
to estimate the fractional differencing estimator d, Geweke and Porter-Hudak (1983) pro-
posed a semi-parametric method of the long memory parameter d which can capture the 
slope of the sample spectral density through a simple OLS regression based on the perio
dogram, as follows: logI(λ) = β0 – d log {4sin2 (λj / 2)}+υj, j=1,…M; where I(λ) is the jth 
periodogram point; λj = 2πj / T; T is the number of observations; β0 is a constant; and υj is an 
error term, asymptotically i.i.d, across harmonic frequencies with zero mean and variance 
known to be equal to π2 / 6. M = g (T) = Tµ with 0 < µ < 1 is the number of Fourier fre-
quencies included in the spectral regression and is an increasing function of T. As argued 
by GPH the inclusion of improper periodogram ordinates M, causes bias in the regression 
which result in an imprecise value of d. To achieve the optimal choice of T, several choices 
are established in terms of the bandwidth parameter M = T0.45; T0.50; …, T0.7. The GPH 
fractional differencing test is performed on the stock return aiming at a prospective gain in 
estimation efficiency. The fractional distinction test tends to find out fractal constitution in 
a time series based on spectral investigation of its low-frequency dynamics.

4.  Data

The series studied in this analysis include ten stock market indices, AEX (Nether-
lands), ^AORD (Australia), DAX (Germany), DJA (USA), FCHI (France), FTSE 100 
(UK), HANGSENG (Hongkong), NIKKEI (Japan), NZE 50 (New Zealand) and STRAITS 
TIMES (Singapore) at daily frequencies. The market classification as developed is based 
on Morgan Stanley Capital International (MSCI). The MSCI market classification scheme 
depends on the following three criteria: economic development, size and liquidity, and 
market accessibility. A market is classified as developed if: i) the country’s Gross National 
Income per capita is 25% above the World Bank high income threshold for 3 consecutive 
years; ii) there is a minimum number of companies satisfying minimum size and liqui
dity requirements; and iii) there is a high openness to foreign ownership, ease of capital 
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inflows/outflows, high efficiency of the operational framework and stability of the institu-
tional framework. The period of study is from January 2005 to July 2011. The daily clo
sing values of the individual indices were taken and daily logarithmic index returns were 
calculated using the relation r(t) = ln(pt+1)-ln(pt) where r(t) is the return on the index on 
t-th day, ln(pt+1), ln(pt) represents natural logarithm of index value on t+1 day and tth day 
respectively. We test for long memory on logarithmic return, absolute return (mod value) 
and squared return series from the stock markets referred above. 

5.  Findings 

5.1.  Descriptive Statistics

The statistical summaries of logarithmic return, absolute return and squared return se-
ries of all the indices are reported in Table 1 which shows that average logarithmic return 
of seven indices ^AORD, DAX, DJA, FTSE 100, HANGSENG, NZX 50, and STRAITS 
TIMES are positive. The logarithmic return series of seven indices are negatively skewed 
while other three are positively skewed and all ten return series are leptokurtic. This along 
with high value of Jarque-Bera statistic clearly suggests that logarithmic return series of 
both the indices cannot be regarded as normally distributed. The absolute return series and 
squared return series of all the ten indices are positively skewed and leptokurtic indicating 
non normal distribution. 

Table 1

Descriptive Statistics

Indices Data Mean Median Std. Dev. Skewness Kurtosis Jarque-
Bera

AEX

RET -0.00003 0.00055 0.014796 -0.159232 12.53456 6336.518

SQR 0.00022 0.00004 0.000743 8.245191 84.72715 483981.5

ABS 0.00954 0.00618 0.011309 3.43741 20.35517 24261.88

^AORD

RET 0.00007 0.00055 0.011951 -0.55286 8.137586 1902.147

SQR 0.00014 0.00004 0.000381 9.038697 126.8836 1079542

ABS 0.00841 0.00618 0.008491 2.617565 14.66688 11262.62

DAX

RET 0.000311 0.001026 0.014209 0.135695 11.564 5105.45

SQR 0.000202 0.0000426 0.000656 10.4208 148.5377 1503184

ABS 0.009551 0.006528 0.010523 3.256275 21.04484 25593.4

DJA

RET 0.00015 0.00075 0.013479 -0.143218 10.73939 4108.639

SQR 0.00018 0.00004 0.000567 9.299241 122.1793 996647.9

ABS 0.00893 0.00612 0.0101 3.060672 17.93027 17836.29
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Indices Data Mean Median Std. Dev. Skewness Kurtosis Jarque-
Bera

FCHI

RET -0.00002 0.00028 0.014939 0.139911 11.14367 4625.705

SQR 0.00022 0.00005 0.000711 9.032366 104.5622 741337.5

ABS 0.01005 0.00685 0.011051 3.228661 19.81492 22602.54

FTSE 100

RET 0.000114 0.000535 0.013306 -0.111072 11.467420 4926.60

SQR 0.000177 0.000038 0.000573 9.070070 107.669800 774892.40

ABS 0.008873 0.006156 0.009914 3.286173 19.980070 22764.28

HANGSENG

RET 0.000264 0.000607 0.017637 0.085279 12.02245 5561.239

SQR 0.000311 0.000058 0.001033 10.60141 151.658 1539892

ABS 0.011561 0.007613 0.01332 3.215278 20.72255 24273.66

NIKKEI

RET -0.00009 0.00048 0.01683 -0.57684 12.17072 5695.538

SQR 0.00028 0.00006 0.00095 10.60768 147.82870 1428364

ABS 0.01131 0.00780 0.01246 3.38563 22.64538 28786.06

NZX 50 

RET 0.00006 0.00044 0.00790 -0.31660 7.71956 1540.965

SQR 0.00006 0.00002 0.00016 10.51878 169.53740 1914881

ABS 0.00569 0.00413 0.00548 2.51779 15.22086 11872.77

STRAITS 
TIMES

RET 0.000244 0.000621 0.013286 -0.346848 9.498384 2923.87

SQR 0.000176 0.0000371 0.000514 8.272209 98.35018 641137.9

ABS 0.008918 0.006089 0.009849 2.841394 15.48525 12882.18

RET – Logarithmic Return Series, SQR – Squared Return Series, ABS – Absolute Return Series.

5.2.  Unit Root tests

The results of unit root tests are displayed in Table 2. The null hypothesis of presence 
of unit root in ADF test and PP test is rejected at 1% level of significance for logarithmic 
return, absolute return and squared return series of all ten indices indicating all the data 
series are stationary. 
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Table 2

Unit Root Tests

Indices Data ADF PP Indices Data ADF PP

AEX

RET -42.0436 *** -42.0436 ***

^AORD

RET -42.0522*** -42.0522***

SQR -4.4416 *** -85.5997*** SQR -7.0459*** -48.3395 ***

ABS -5.2382 *** -69.4831*** ABS -6.5539*** -50.2863 ***

DAX

RET -42.0477*** -42.0477 ***

DJA

RET -33.2366 *** -44.3978 ***

SQR -4.4151 *** -106.7454 *** SQR -4.8819 *** -82.3488 ***

ABS -5.5997 *** -80.7019 *** ABS -5.3254 *** -66.6536***

FCHI

RET -43.7130 *** -43.7130***

FTSE 100

RET -19.2083*** -43.6156***

SQR -4.5899 *** -87.9003 *** SQR -4.4409 *** -80.1036 ***

ABS -5.9249*** -65.5307 *** ABS -7.6952 *** -42.6195 ***

HANGSENG

RET -42.1530 *** -42.1530***

NIKKEI

RET -41.5425 *** -41.5425 ***

SQR -6.8983 *** -32.5338 *** SQR -6.6884 *** -38.6122 ***

ABS -5.2128 *** -59.0043 *** ABS -7.7521*** -37.5714 ***

NZX 50 

RET -37.9154 *** -37.9154 ***
STRAITS 
TIMES

RET -41.0268 *** -41.0268 ***

SQR -5.1796 *** -73.1594 *** SQR -6.3265*** -63.0542 ***

ABS -5.6547 *** -60.0368*** ABS -5.7316*** -65.8550 ***

a) The critical values are those of Mackinnon (1991).
b) *** represent the rejection of null hypothesis at 1% level of significance.

5.3.  Visual Interpretation: Autocorrelation Function (ACF)

The ACF was plotted against the time lag for logarithmic return, absolute return and 
squared return series of all the ten indices. The lag was taken upto 36 days. The autoco
rrelation is found to decay quickly and is insignificant in the logarithmic return series of 
all the indices. However in case of absolute and squared return series, a slow decay in 
autocorrelation is observed. The ACF of the data series (Figure 1) indicates short memory 
in logarithmic return but long range dependence or persistence for absolute and squared 
return series in developed stock markets. The findings also support existence of Taylor 
Effect in the selected developed markets as autocorrelations of absolute returns (Figure 2) 
are usually larger than those of squared returns (Figure 3).
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Figure 1

Visual Interpretation: Autocorrelation Function (ACF) of logarithmic return series of ten 
developed stock indices
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Figure 2

Visual Interpretation: Autocorrelation Function (ACF) of absolute return series of ten 
developed stock indices
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Figure 3

Visual Interpretation: Autocorrelation Function (ACF) of squared return series of ten 
developed stock indices
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5.4. � Rescaled-Range (R/S) Analysis: Hurst-Mandelbrot’s Classical R/S Statistic and 
Lo Statistic

The results of Rescaled-Range (R/S) Analysis are presented in Table 3 where Hurst-
Mandelbrot’s Classical R/S Statistic and Lo Statistic are displayed. The estimated va
lues of Hurst-Mandelbrot’s Classical R/S Statistic suggest that the null hypothesis of no 
long-range dependence in case of logarithmic return series of all ten indices could not be 
rejected at a generally acceptable level of significance as estimated values of the statistic 
fall within the acceptance region. However, for both absolute and squared return, the null 
hypothesis is rejected at 1% level of significance. The critical values of the statistic are 
obtained from Lo (table II, 1991). This clearly indicates that although logarithmic returns 
may not have long memory, returns without signs as well as volatility as measured by 
squared returns shows existence of long run dependence in the series. We also computed 
Lo’s statistic since Classical R/S Statistic is sensitive to short range dependence and 
may give biased results in the case of short-range dependence and heterogeneities. The 
Lo statistic displayed in Table 3 also shows that the null hypothesis of no long-range 
dependence in case of logarithmic return series of all ten indices could not be rejected 
at a generally acceptable level of significance as estimated value of the statistic falls 
within the acceptance region. For absolute return series, Lo statistic rejects the null hy-
pothesis at 1% level of significance for all the ten indices and findings are similar in case 
of squared returns as well. The results of both the tests are consistent and indicate short 
memory for logarithmic return series and long memory for volatility in general for the 
selected developed stock markets. 
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Table 3

Hurst-Mandelbrot’s Classical R/S Statistic and Lo Statistic

Indices Data

Hurst-
Mandelbrot’s 
Classical R/S 

Statistic

Lo 
Statistic Indices Data

Hurst-
Mandelbrot’s 
Classical R/S 

Statistic

Lo 
Statistic

AEX
RET 1.69 1.69

^AORD
RET 1.67 1.67

SQR 5.22 3.02 SQR 5.5 2.92

ABS 6.96 3.8 ABS 6.97 3.66

DAX
RET 1.6 1.6

DJA
RET 1.52 1.52

SQR 4.73 3.14 SQR 5.55 3.37

ABS 6.14 3.98 ABS 7.11 3.72

FCHI
RET 1.45 1.45

FTSE 100
RET 1.3 1.3

SQR 4.64 2.85 SQR 5.08 2.83

ABS 6.36 3.61 ABS 6.81 3.51

HANGSENG
RET 1.57 1.57

NIKKEI
RET 1.36 1.36

SQR 5.56 2.64 SQR 4.32 2.09

ABS 8.26 4.15 ABS 5.73 2.77

NZX 50 
RET 1.91 1.85

STRAITS 
TIMES

RET 1.97 1.97

SQR 5.19 3.07 SQR 5.79 3.47

ABS 6.43 3.45 ABS 7.56 4.2

Note: Critical values: 

10% level of significance [0.861, 1.747]
5% level of significance [0.809, 1.862]
1% level of significance [0.721, 2.098]

5.5.  The Spectral Regression Method (GPH statistic)

Table 4 report estimates of the fractional differencing parameter (d) for the daily loga-
rithmic return, absolute return and squared return series of all ten indices from ten devel-
oped stock markets. The test examine the null hypothesis of short memory (H0 : d = 0) 
against long memory alternatives (H1 : d ≠ 0) for a range of bandwidth (M = T0.45, T0.50, …, 
T0.7). The estimates of d are statistically significant for all ten indices in absolute and square 
return series. The null hypothesis of short memory is rejected and the findings show that 
long memory exists in absolute return and volatility in the selected stock markets. However 
the findings are mixed in case of logarithmic return series. Estimate of d is found to be sta-
tistically significant at two chosen bandwidths in case of Netherlands(AEX) whereas it is 
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found significant at one of the chosen bandwidth in case of Australia(^AORD), New Zea-
land (NZX 50) and Singapore (STRAITS TIMES). The null of short memory in logarith-
mic return series is rejected in case of Germany, USA, France, UK, HongKong and Japan. 

Table 4

GPH estimate of fractional differencing parameter (d)

Indices Data M=T0.45 M=T0. 50 M=T0. 55 M=T0.60 M=T0.65 M=T0.70

AEX

RET
0.1995 

(0.1372) 
[1.4539] 

0.2519** 
(0 .1075) 
[2.3445] 

0.1538 
(0.0902) 
[1.7036]

0.1597 
(0.0856) 
[1.8663] 

0.1428** 
(0.0684) 
[2.0880] 

0.0569
(0.0540) 
[1.0538] 

SQR
0.5523*** 
(0.0714) 
[7.7339]

0.6039*** 
(0.0614) 
[9.8341]

0.6348*** 
(0.05445) 
[11.6593]

0.7610*** 
(0.0702) 
[10.8285] 

0.5406*** 
(0.0571) 
[9.4552]

0.5244 *** 
(0.0457)
[11.4562] 

ABS
0.6534*** 
(0.1306) 
[5.0041] 

0.6198*** 
(0.0930) 
[6.6641] 

0.7218*** 
(0.0940) 
[7.6754] 

0.6640*** 
(0.0738) 
[8.9890] 

0.5377*** 
(0.0612) 
[8.7781] 

0.4414*** 
(0.0495) 
 [8.9155] 

^AORD

RET
0.1867 

(0.1213) 
[1.5401] 

0.2523** 
(0.1002) 
[2.5188] 

0.0868 
(0.0850) 
[1.0211] 

0.0687 
(0.0773) 
[0.8883] 

0.0167 
(0.0599) 
[0.2802] 

0.0149
(0.0488) 
 [0.3064] 

SQR
0.4680*** 
(0.0880) 
[5.3157] 

0.5477*** 
(0.0735) 
[7.4510] 

 0.4886*** 
(0.0697) 
[7.0069] 

0.4849*** 
(0.0555) 
[8.7232] 

0.4756 *** 
(0.0452) 
[10.5136] 

0.5199*** 
(0.0429)
[12.0966] 

ABS
0.5197*** 
(0.1014) 
[5.1265] 

0.6487*** 
(0.1154) 
[5.6206] 

0.5735*** 
(0.0956) 
[5.9970] 

0.5455*** 
(0.0727) 
[7.4974] 

0.5512 *** 
(0.0658) 
[8.3682]

0.4811*** 
(0.0534) 
[9.0009] 

DAX

RET
0.2677 

(0.1544) 
[1.7338] 

0.1425 
(0.1122) 
[1.2707] 

-0.0130 
(0.0907) 
[-0.1437]

-0.0297 
(0.0729)
[-0.4080] 

0.0184 
(0.0630) 
[0.2919] 

0.0061 
(0.054) 
[0.1135] 

SQR
0.5136*** 
(0.0702) 
[7.3067] 

0.6811*** 
(0.0913) 
[7.4541] 

 0.5549*** 
(0.0712) 
[7.7889] 

0.6034*** 
(0.0638) 
[9.4530] 

0.4845*** 
(0.0539) 
[8.9818] 

0.3410*** 
(0.0465) 
[7.3293] 

ABS
0.5787*** 
(0.1534) 
[3.7729] 

0.6394*** 
(0.1074) 
[5.9530] 

0.5559*** 
(0.0912) 
[6.0907] 

0.5524*** 
(0.0821) 
[6.7267] 

0.4850*** 
(0.0633) 
[7.6514] 

0.3484*** 
(0.0502) 
[6.9321]

DJA

RET
0.1482 

(0.1404) 
[1.0559] 

0.1050 
(0.1019) 
1.0313]

-0.0171 
(0.0858) 

 [-0.1994]

-0.0306 
(0.0650)
[-0.4708]

0.0175 
(0.0581) 
[0.3022]

-0.0283 
(0.0486) 

 [-0.5825] 

SQR
0.7270*** 
(0.1513) 
[4.8059] 

0.8562 *** 
(0.109) 
[7.8550]

 0.6717*** 
(0.0839) 
[8.0037]

0.7128*** 
(0.0661) 
[10.7850]

0.6746 *** 
(0.0519) 
[12.9878] 

0.5333*** 
(0.0430 ) 
[12.3837]

ABS
0.6627*** 
(0.1003) 
[6.6076] 

 0.7844*** 
(0.0961) 
[8.1604] 

 0.7262 *** 
(0.0911) 
[7.9673]

0.7168*** 
(0.0672) 
[10.6575] 

0.6586 *** 
(0.0547) 
[12.0386] 

0.5916*** 
(0.0468) 
[12.6399]
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Indices Data M=T0.45 M=T0. 50 M=T0. 55 M=T0.60 M=T0.65 M=T0.70

FCHI

RET
0.1027 

(0.1328) 
[0.7737]

0.1965 
(0.1059) 
[1.8552]

 0.0448 
(0.0901) 
[0.4973]

-0.00009 
(0.0740) 
[-0.0013]

0.0102 
(0.0638) 
[0.1605] 

-0.0062 
(0.0508) 
[-0.1226]

SQR
0.6037*** 
(0.1078) 
[5.6003]

0.6099*** 
(0.0863) 
[7.0631] 

 0.5536*** 
(0.0688) 
[8.0391]

0.5943*** 
(0.0684) 
[8.6808]

 0.4418 *** 
(0.0541) 
[8.1570]

0.4085*** 
(0.0458) 
[8.9181]

ABS
0.5637*** 
(0.1097) 
[5.1376] 

0.5779*** 
(0.0818) 
[7.0591]

 0.5987 *** 
(0.0815) 
[7.3403]

0.5962*** 
(0.0782) 
[7.6223]

 0.5395*** 
(0.063) 
[8.5632] 

0.4229*** 
(0.0502) 
[8.4111] 

FTSE 100

RET
0.0217 

(0.1521) 
[0.1431]

0.1173 
(0.1136) 
[1.0323] 

 -0.0569 
(0.0888) 
[-0.6407] 

-0.0618 
(0.0727) 

 [-0.8498]

 0.0116 
(0.0630) 
[0.1853] 

-0.0160 
(0.0508) 

[-0.3158 ]

SQR
0.5387*** 
(0.0706) 
[7.6249] 

 0.6574*** 
(0.0679) 
[9.6799] 

0.5648 *** 
(0.0652) 
[8.6548] 

0.5966*** 
(0.0681) 
[8.7590] 

0.4454*** 
(0.0522) 
[8.5178] 

0.4845*** 
(0.0441) 
[10.9650] 

ABS
0.5808*** 
(0.1167) 
[4.9778] 

0.6638*** 
(0.0895) 
[7.4120] 

 0.6223*** 
(0.0800) 
[7.7766] 

0.5704*** 
(0.0695) 
[8.2060]

0.5440*** 
(0.0581) 
[9.3610] 

0.4328*** 
(0.0451) 
[9.5770] 

HANGSENG

RET
0.1088 

(0.1229) 
[0.8860] 

0.3056 
(0.1614) 
[1.8948 

0.1285 
(0.1185) 
[1.0845] 

0.0293 
(0.0883) 
[0.3323]

-0.0404 
(0.0649) 
[-0.6232] 

0.0163 
(0.0545) 
[0.3001] 

SQR
0.3922*** 
(0.0657) 
[5.9675] 

0.5608*** 
(0.0970) 
[5.7813] 

0.4852*** 
(0.0766) 
[6.3297] 

0.5235*** 
(0.0602) 
[8.6909]

0.3993*** 
(0.0512) 
[7.7887] 

 0.3010*** 
(0.0399) 
[7.5371]

ABS
 0.5989*** 

(0.1071) 
[5.5905] 

 0.6568*** 
(0.0913) 
[7.1951] 

0.5893 *** 
(0.0800) 
[7.3649] 

 0.6105*** 
(0.0630) 
[9.6895] 

0.5202*** 
(0.0528) 
[9.8531]

0.4342*** 
(0.0460) 
[9.4282] 

NIKKEI

RET
0.1359 

(0.1442) 
[0.9429]

0.1358 
(0.1071) 
[1.2684] 

 0.0331 
(0.0820) 
[0.4039] 

 0.0679 
(0.0657) 
[1.0331] 

 0.0413 
(0.0559) 
[0.7388] 

 0.0088 
(0.0480) 
[0.1839] 

SQR
0.3143*** 
(0.0581) 
[5.4108]

0.4148*** 
(0.0664) 
[6.2409] 

 0.4719*** 
(0.0575) 
[8.2066] 

0.6120*** 
(0.0581) 
[10.5340] 

0.5143*** 
(0.0518) 
[9.9168] 

 0.4568*** 
(0.0427) 
[10.6899] 

ABS
0.5208*** 
(0.0955) 
[5.4520]

 0.5242*** 
(0.0762) 
[6.8756 ]

 0.5949*** 
(0.0816) 
[7.2909]

 0.6369*** 
(0.0739) 
[8.6151]

0.5575*** 
(0.0604) 
[9.2232]

0.5164*** 
(0.0480) 
[10.7447] 

NZX 50 

RET
0.0018 

(0.1202) 
[0.0152] 

0.1654 
(0.0976) 
[1.6937]

0.1089 
(0.0825) 
[1.3198]

0.1207 
(0.0703) 
[1.7165]

0.1299** 
(0.0590) 
[2.2012]

0.0750 
(0.0460) 
[1.6307] 

SQR
0.3001*** 
(0.0528) 
[5.6850 

0.3726*** 
(0.0414) 
[8.9823]

0.4841*** 
(0.0500) 
[9.6742]

0.5531*** 
(0.0456) 
[12.1230]

0.6195*** 
(0.0420) 
[14.7465]

0.5686*** 
(0.0453) 
[12.5491]

ABS
0.4555*** 
(0.1193) 
[3.8175 

0.5075*** 
(0.0925) 
[5.4830] 

0.6070*** 
(0.0878) 
[6.9084] 

0.5674*** 
(0.0655) 
[8.6519] 

 0.5749*** 
(0.0559) 
[10.2715]

 0.4598*** 
(0.0494) 
[9.2928]
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Indices Data M=T0.45 M=T0. 50 M=T0. 55 M=T0.60 M=T0.65 M=T0.70

STRAITS 
TIMES

RET
0.1831 

(0.1404) 
[1.3041

0.2477** 
(0.1046) 
[2.3694] 

0.1655 
(0.0833) 
[1.9863]

 0.0729 
(0.0635) 
[1.1470]

 0.0599 
(0.0615) 
[0.9733] 

0.0769 
(0.0506) 
[1.5183] 

SQR
0.4827*** 
(0.0707) 
[6.8197] 

0.5487*** 
(0.0785) 
[6.9904]

0.5138*** 
(0.06664) 
[7.7113]

0.5846*** 
(0.0609) 
[9.5965]

0.5000*** 
(0.0583) 
[8.5636] 

 0.4641*** 
(0.0500) 
[9.2727]

ABS
 0.6988*** 

(0.1872) 
[3.7325] 

 0.6692 *** 
(0.1381) 
[4.8477]

0.5019*** 
(0.1014) 
[0.9502]

0.4883*** 
(0.0778) 
[6.2719] 

0.4268*** 
(0.0629) 
[6.7844] 

0.3868 *** 
(0.0490) 
[7.8908] 

a)  ***, ** and ** represents the rejection of null hypothesis at 1%, 5% and 10% level of significance respectively.
b)  Standard errors in ( ) and t-statistics in [ ].

6.  Conclusion

Efficient market hypothesis in its weak form suggests that asset prices reflect all avai
lable information and asset prices should fluctuate as random white noise which is satisfied 
by unpredictable behaviour of asset returns. In presence of long memory, market efficiency 
hypothesis is violated since return series are not independent over time and therefore past re-
turns may be used to predict future returns. Exploring long memory property is appealing for 
derivative market participants, risk managers and asset allocation decisions makers, whose 
interest is to reasonably forecast stock market movements. The study examined the evidence 
of long memory in the ten developed markets – 4 from Europe, 5 from Pacific and the US. To 
test the presence of long-memory in asset returns, we computed Hurst-Mandelbrot’s Classi-
cal R/S statistic, Lo’s statistic and semi parametric GPH statistic. All the tests both are con-
sistent with long range dependence in the absolute return and squared return series. Findings 
largely support the Taylor effect as autocorrelations of absolute returns are usually larger than 
those of squared returns and the estimate of the fractional differencing parameter is generally 
higher for the absolute returns than that of squared returns. Overall findings did not suggest 
long-term memory in chosen stock market logarithmic returns indicating developed stock 
market returns follows a random walk. Absence of long memory in logarithmic return series 
of the indices show no evidence against the weak form of market efficiency in stock returns. 
Our findings are consistent across all the selected developed countries where stock market 
of all countries show long range dependence in the absolute return and squared return series 
but did not suggest long-term memory in logarithmic returns. Absence of long memory will 
imply that assets are not systematically over or under-valued, which provides justification 
for passive index investment. Investors may expect a normal (risk adjusted) rate of return 
while firms should expect to receive a fair value for securities that they sell. Apparent past 
price patterns are not predictive for future prices leaving little scope for profitable arbitrage 
opportunities. Presence of long memory in squared returns indicates volatility of asset returns 
can be modeled using returns from the recent as well as remote past and hence derivative ins
truments can now be more efficiently priced. Another important implication concerning the 
existence of long memory in asset returns series is concerns the application of risk analysis 
models to estimate potential losses, which is the case of Value at Risk (VaR). In this respect, 
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identifying the presence of long memory in financial assets series must aid in producing more 
conservative and precise estimations in VaR analysis. Also the relevance of linear pricing 
models and statistical inferences about asset pricing models based on standard testing pro-
cedures is not questionable in absence of long range dependence in stock returns. Given the 
financial economic environment, settlement cycles, strong regulatory authority and market 
micro structure in the developed markets, a possible explanation for absence of long memory 
in return series may be based on the grounds that developed markets are informationally effi-
cient, prices tend to reflect all publicly available information and any new information is fully 
arbitraged away. An alternative explanation was suggested by Lo(1991) when he suggested 
that “…. we find little evidence of long-term memory in historical U.S. stock market returns. 
If the source of serial correlation is lagged adjustment to new information, the absence of 
strong dependence in stock returns should not be surprising from an economic standpoint, 
given the frequency with which financial asset markets clear. Surely financial security prices 
must be immune to persistent informational asymmetries, especially over longer time spans”. 
The financial market regulators in these developed markets may look into the sources of long 
memory in volatility of stock returns to improve efficiency levels.
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