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ABSTRACT: Bayesianism and Inference to the best explanation (IBE) are two different models of inference. Recently 

there has been some debate about the possibility of “bayesianizing” IBE. Firstly I explore several alterna-
tives to include explanatory considerations in Bayes’s Theorem. Then I distinguish two different interpreta-
tions of prior probabilities: “IBE-Bayesianism” (IBE-Bay) and “frequentist-Bayesianism” (Freq-Bay). After 
detailing the content of the latter, I propose a rule for assessing the priors. I also argue that Freq-Bay: (i) 
endorses a role for explanatory value in the assessment of scientific hypotheses; (ii) avoids a purely subjec-
tivist reading of prior probabilities; and (iii) fits better than IBE-Bayesianism with two basic facts about sci-
ence, i.e., the prominent role played by empirical testing and the existence of many scientific theories in the 
past that failed to fulfil their promises and were subsequently abandoned. 

Keywords: Bayesian epistemology, inference to the best explanation, confirmation, frequentism, prior probability, ex-
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Scientists are very often confronted with alternative accounts of experimental data. 
Decisions concerning which one should be preferred usually involve several values. 
Quantitative confirmation theories focus on probability. In particular, they conceive 
the confirmation of a hypothesis as an increase of its probability due to the evidence. 
On the other side, when comparing rival hypotheses, scientists use to consider their 
respective explanatory merits. Sometimes they prefer hypothesis h1 instead of hy-
pothesis h2 because h1 is better qua explanation than h2, even though h1 does not en-
joy any significant predictive success yet. Eventually, h1 should exhibit its predictive 
power, but this further condition, sometimes considered as a necessary one for accep-
tance of hypothesis, should not depreciate the important role played by explanatory 
value in scientists’ assessments of hypotheses. A good example is Einstein’s General 
Relativity. Before enjoying a substantial predictive record of success, it was widely 
considered a valuable theory which deserved careful scrutiny, even though this as-
sessment was largely based on explanatory merits like unification and simplicity. 
Hence, the superiority of h1 over h2 concerning explanatory value can be a good rea-
son —for scientists, not only for some philosophers of science— to investigate the 
consequences of the former in detail. 
 In this paper I will address one general worry raised by the foregoing remarks, 
namely, the supposed connection between explanatory merit, on one side, and con-
firmation and probability on the other. I will restrict myself to Bayesianism and “infer-
ence to the best explanation” (IBE, hereafter). Recently there is some debate about 
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the possibility of integrating them (van Fraassen 1983, Douven 1999, Hon and 
Rakover 2001, Niiniluoto 2004, Psillos 2004). IBE is a model of inference that stresses 
the role played by explanatory considerations in non-deductive inference in general. It 
does not seem out of place, then, to allude to IBE in the scientific context, given that 
such sort of considerations effectively guide scientific judgment. Besides, the formal 
apparatus provided by probability theory could perhaps make IBE more precise. In 
fact, vagueness has been one of the criticisms levelled at it. 

1. “Bayesianizing” inference to the best explanation 

Peter Lipton, one of the most prominent advocates of IBE, alludes to such properties 
as scope, simplicity, unification, mechanism, and precision in order to distinguish 
good explanations from bad ones (Lipton 2004). We will focus, however, on the gen-
eral property of being a good explanation and I will use the expressions ‘explanatory 
merit’ or ‘explanatory value’, instead of Lipton’s favourite expression ‘loveliness’, to 
refer to that general property.  
 Lipton maintains that explanatory merit enjoys a double role in inductive inference. 
The first one is psychological: 

According to IBE, our inferential practices are governed by explanatory considerations. Given 
our data and our background beliefs, we infer what would, if true, provide the best of the com-
peting explanations we can generate of those data (so long as the best is good enough for us to 
make any inference at all). (Lipton 2004, p. 56) 

In our everyday life we have a tendency to infer the hypothesis that is the best, qua ex-
planation, from the pool of available hypotheses. In scientific research, in its turn, ex-
perimental tests and procedures of gathering empirical information are devised in or-
der to decide which hypothesis should be accepted. It could be said that, in principle, 
scientists are interested in selecting the true —or the most probable— of those hy-
potheses (let us put aside for the moment other factors which could be involved). We 
may grant that all of them enjoy some previous plausibility; otherwise, any efforts to 
test them would be pointless. But the issue for IBE is not simply that when deciding 
which hypotheses deserve to be investigated in detail scientists are guided by consid-
erations about their respective explanatory successes. The fact is, rather, that scientists’ 
assessments on the plausibility of those competing hypotheses are definitely based on 
judgments about how good they are as explanations. Shortly, as a consequence of their 
explanatory import, hypotheses are considered more or less probable.  
 Nonetheless, even though Lipton focuses on the descriptive side of IBE, explana-
tory merit also plays an epistemic, normative, role for him:  

We may characterize the best explanation as the one which would, if correct, be the most ex-
planatory or provide the most understanding: the ‘loveliest’ explanation. [...] The version of infer-
ence to the best explanation we should consider is Inference to the Loveliest Potential Explana-
tion. Here at least we have an attempt to account for epistemic value in terms of explanatory virtue. This 
version claims that the explanation that would, if true, provide the deepest understanding is the 
explanation that is likeliest to be true. (Lipton 2004, pp. 59, 61; my emphasis) 

“Explanatory loveliness” is an epistemic value insofar as it increases probability. Cer-
tainly, our inductive inferential practice is fallible, and there is no perfect match be-
tween likeliness and explanatory value. Sometimes the likeliest explanation is not very 
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enlightening, and an explanation can also be appealing without being likely. But, if 
IBE-theorists are right, other things being equal, good explanations are more probable 
than bad ones: “After all, IBE is supposed to describe strong inductive arguments, 
and a strong inductive argument is one where the premises make the conclusion 
likely” (Lipton 2004, p. 60). As a result, IBE is not compatible with any account of the 
theory-choice problem which allocates explanatory value within the realm of non-
epistemic —purely pragmatic— virtues. After this brief sketch of IBE’s essential 
claims, let us turn to Bayes’s Theorem.  
 Bayes’s Theorem is a deductive consequence of the axioms of probability. Accord-
ing to an epistemological reading of it, this theorem provides an algorithm to calculate 
the degree of support that a particular bit of evidence e confers to a hypothesis h. Here 
is the simplest epistemological version of this theorem (see Gillies 2000, chaps. 3-4, 
and Joyce 2003 for details): 
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p(h/e) is the conditional probability of h, given that e occurs.  
p(h) is the prior probability of h. 
p(e/h) is the likelihood of e on h.  
p(e) is the expectedness of e.  

In situations where there are some rival incompatible explanations hi, hj, hk, ... , hn, the 
appropriate formula is: 
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It is worth emphasizing that “prior probability” does not necessarily mean “a priori 
probability.” Prior probability is the probability of h before e is obtained and that’s all. 
The theorem is silent on the way h gets its prior probability. So it does not rule out the 
possibility that h’s prior could be based on some evidence previous to e.1 Now, a par-
ticular bit of evidence e1 confirms h iff when e1 occurs the probability of h is increased, 
that is, iff p(h/e1)  p(h). In other words, e1 confirms h iff the posterior, the conditional-
ized probability, is higher than the prior probability. When we get further evidence, e2, 
we should take p(h/e1) as the prior probability; the likelihood now would be p(e2/h) 
and the corresponding expectedness is p(e2). Then we would calculate p(h/e2). This sort 

                                                      
1 That is the reason for including a special term to refer to the background knowledge: 
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 The term b draws our attention to the fact that probability assessments are always relative to our pre-
vious knowledge. Granted the point, the version in the main text suffices here. 
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of iterated conditionalization is the Bayesian way of learning from experience, since 
probability assignments are modified as empirical evidence increases.2  
 In regard to the scientific context, Lipton asserts: “The notion of explanatory love-
liness should help to make sense of the common observation of scientists that broadly 
aesthetic considerations of theoretical elegance, simplicity, and unification are a guide 
to inference” (Lipton 1991, p. 68). Now the question is how explanatory considera-
tions could be included in Bayes’s Theorem. It should be remarked that this is not an 
issue of concern only for IBE theorists. At the outset of this paper I alluded to the 
role played by explanatory merit in theory choice. So, even Bayesians who do not feel 
sympathetic at all with IBE could have a reason to include it in the Bayesian formula.3  
 Anyway, if explanation has any epistemic import, as IBE-theorists claim, it must 
have an effect on probabilities. Let us think of two hypotheses (h1, h2) which greatly 
differ in their respective explanatory merits: while h1 is a good explanation, h2 is nota-
bly ad-hoc. How to include explanatory merit in the Bayesian algorithm so that the final 
probabilities attached to h1 and h2 reflect their different explanatory value? There are 
several alternatives:  

(1) Increasing/decreasing conditional probabilities. Firstly we calculate the conditional prob-
abilities on e. Then we give an extra weight ( ) to explanatory value. So,  

pf (h1) = p(h1/e1) +  pf (h2) = p(h2/e1) –  

where pf is the probability of the hypotheses given both the available confirmatory 
evidence e1 and their explanatory quality.  
 It should be noticed here that although explanatory merit is taken into account, 
properly speaking, it is not included in the Bayesian formula. Recall that if hypotheses 
had further untested observational consequences, new empirical evidence could 
change the value for pf by means of the iterated application of Bayes’s Theorem for 
p(h/e1), p(h/e1  e2), ... But, according to (1), after the required calculations are done, 
the prize for explanation is extrinsically added. It is no surprise that such sort of modi-
fication on conditional probabilities is exposed to a dynamic Dutch-Book argument 
(van Fraassen 1989, chapter 7). A dynamic Dutch-Book argument purports to show 
that a bookie can make a series of bets, offered at distinct times, against you which 
guarantee that you will lose some money whatever happens. The conclusion is that an 
                                                      
2 A clear advantage of Bayesianism over the hypothetic-deductive model is that the latter is a particular 

case of Bayes’s theorem. Thus, if h deductively entails e, then p(e/h) = 1. In that case p(h/e) = p(h) / 
p(e). Since h entails e, p(h)  p(e). Then, successful deductive explanation of e by h guarantees that e 
confirms h, that is, p(h/e)  p(h) for a wide array of situations where p(h) > 0 and p(e)  1. Concerning 
refutation, if p(e/h) = 1, p( e/h) = 0. But then, if e occurs, p(h/ e) = 0. So, when e occurs, h has 
been conclusively refuted. A further complication is that scientists usually invoke auxiliary assump-
tions in order to neutralize counterevidence (see Salmon 1996). 

3 Decision theory is a further alternative for Bayesians who intend to leave room for explanatory value. 
Probability and explanatory merit could be considered as different utilities, and scientists’ preferences 
should be rationalized in terms of maximizing expected value (see, for instance, Maher 1993). How-
ever, IBE’s advocates would reject this point of view because if probability and explanatoriness are 
set apart, the latter is entirely deprived of confirmational value. 
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updating rule like the “delta policy” is incoherent because it violates the axioms of 
probability. Since some advocates of IBE have accepted this conclusion, I will not 
pursue option (1). In fact, there are less controversial alternatives for them, as we will 
see in the following paragraphs.4  

(2) Increasing/decreasing prior probabilities. The prior probability is the Bayesian expression 
for the initial plausibility of a hypothesis. Taking for granted a definition of explana-
tory value that includes theoretical elegance, simplicity..., it follows that the initial plau-
sibility of hypotheses has to do with their explanatory merit. Thus, good explanations 
should enjoy higher prior probabilities than bad ones. Then we would calculate the 
subsequent effect of evidence and we would obtain a value for p(h/e).  
 This option avoids the unfortunate consequences of the “delta policy” —the 
Dutch-Book argument— and preserves the basic claims of IBE. The psychological 
role of explanation in inference seems vindicated. Attributions of prior probability —
i.e., plausibility— are guided by explanatory value, and conditionalization on evidence 
e1 takes place, then, after explanatory criteria are applied to set the value of p(h).  
 Concerning the epistemic role of explanatory merit, Bayes’s recipe asserts that the 
conditional probability, p(h/e), depends both on the likelihood (the probability of the 
evidence given the hypothesis) and on the initial plausibility enjoyed by the hypothesis. 
Hence, high (low) prior probabilities do not ensure high (low) posterior probabilities. 
Turning to our example, h2 —a bad explanation— eventually gets higher posterior 
probability than h1. Then, if h2 surpasses h1 as predictor of the same body of evidence e 
to a great extent, that is, if p(e/h2) >> p(e/h1), the conditional probability of h2 on e 
could be higher than that of h1. It is true, then, that explanatory value does not directly 
increase the conditional or posterior probability, but it may do indirectly. In fact, when 
the likelihood is the same for all competing hypotheses —suppose, for instance, that 
all them entail the evidence at issue—, priors are crucial for posterior probabilities. In 
that case, the factor [p (e/hj)/  p(e/hi)  p(hi)] is the same for all hi, that is: [1/  p(e/hi)  
p(hi)] (see footnote 2). The factor is indeed equal to 1, when in addition to the deduc-
tive relation between rival hypotheses and the evidence, the set of hypotheses form a 
partition of the sample space. Consequently, the higher the prior, the higher the poste-
rior probability. Therefore, in situations like these, prior probabilities decide the ques-
tion: the best explanation, ceteris paribus, would also be the most probable hypothesis in 
respect of the available evidence e.  

(3) Increasing/decreasing likelihoods. A hypothesis may be simple and elegant but provide a 
poor explanation of some particular piece of evidence. An example of this would be 

                                                      
4 Incidentally, not all Bayesians accept that the Dutch-Book argument is sound (see Maher 1993). Con-

cerning van Fraassen’s particular version, Christensen 1991 and Douven 1999 reject it, while Day and 
Kincaid 1994 and Okasha 2000 endorse its conclusion, although they do not think that IBE is in-
compatible with Bayes’s Theorem. In fact, Day and Kincaid suggest alternative 2 —see below—, and 
Okasha favours alternatives 2 and 3. Neither of them, on my view, addresses the crucial question: 
given that there is no inconsistency in including explanatory considerations in Bayes’s Theorem, we 
may include them, but why should we do it? Why should probability and confirmation be affected by 
explanatory value? 
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Newton’s law of gravity and the explanation it provided of the motion of the Moon.5 
However, a general feature of good explanations seems to be that they make the ex-
planandum a natural consequence of the explanans. Since likelihoods express the proba-
bility of the evidence in case the hypothesis is true, it seems that explanatory merit and 
likelihood are somehow related.  
 Likelihoods are relatively easy to calculate when there are accumulated frequency 
data. Thus, it may be known that the symptom e is present in 60 per cent of patients in 
which a disease is present. It is much more complicated to calculate the likelihood of 
gravitational lenses, for instance, given that the General Theory of Relativity is true, 
even though it is precisely in such cases where explanatory considerations could be 
significantly relevant, according to IBE theorists. Rival hypotheses to h1 (h2, h3, ..., hn) 
may seem themselves very unlikely. The reason may well be that they have a lower 
prior probability than h1. But a further aspect involved could also be that they do not 
suggest a convincing account of the underlying mechanism or process that relate the 
explanans to the particular explanandum. Perhaps it is very sketchy, or it is difficult to fit 
it into the background knowledge, while h1 is, in contrast, very good as an explanation 
of e1. And the values of their respective likelihoods p(e/h1), p(e/h2), ..., p(e/hn) should be 
affected by this difference. 
 But we should not exaggerate the similarities between explanatory merit and likeli-
hood. Firstly, p(e/h) may be high even though h does not explain e —think about stan-
dard examples against the deductive-nomological model of explanation. Besides, ac-
cording to Bayes’s formula, confirmation is a matter of mutual reinforcement: if e con-
firms h, then h confirms e. In contrast, very often h explains e, but e does not explain h. 
Causal explanations are paradigmatic examples here. Notwithstanding, the foregoing 
remarks show that explanatory value is not entirely encapsulated in p(h). Explanatory 
value is not an intrinsic merit of h because it partly has to do with the probability of 
the explanandum in relation to the explanans. Explanatory value is, indeed, an umbrella 
term that covers a multitude of different properties. Some of them have to do with 
the initial plausibility of hypotheses —the qualities of the hypothesis per se, such as its 
simplicity or elegance. Some other are concerned with the link between the explanans 
and the explanandum, that is, with the appropriateness of the hypothesis qua explana-
tion of the evidence at issue. Then, if the quality of an explanation is related both to 
the prior probabilities and to the likelihoods —and good explanations are intrinsically 
as well as “relationally” appealing—, those interested in including explanatory merit in 
the Bayesian algorithm should consider alternatives (2) and (3). My aim in this paper is 

                                                      
5 The former is simple and elegant, but the explanation it gives of the motion of the Moon (in Newton’s 

hands) was notoriously poor unlike the explanation of the motion of the planets. Thus one might at-
tempt, as some did, to improve the fit between theory and evidence in the Moon case by adding 
terms to Newton’s law. This would make the hypothesis less elegant, but we would surely say that 
there are more facts —or empirical observations— explained by it. Certainly, it is debatable whether 
these modifications effectively increase the global amount of explanatory merit of the hypothesis. 
Anyway, the point is that the explanatory merit of a hypothesis has to do both with intrinsic features 
of it and with its relation to particular explananda. 
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more modest. Leaving aside the problem of translating likelihoods to explanation-
related terms, in the sequel I will focus on prior probabilities.6  

2. Prior probabilities 

What are prior probabilities for Bayesians? So-called “subjective” Bayesianism (with B. 
De Finetti and F.P. Ramsey as the main historical figures) defends that the only epis-
temic constraints on belief are the axioms of probability and the iterated application of 
Bayes’s rule (conditionalization) in light of new evidence (see above, p. 93). It must be 
said that subjectivism has been the orthodox position in the Bayesian camp for a long 
time (see Howson and Urbach 2006 for the standard account among philosophers of 
science). Concerning the priors, subjective Bayesians think that their values are con-
strained just by probabilistic coherence and may radically disagree for different agents. 
At this point subjective Bayesians use to invoke several “Convergence Theorems” in 
order to minimize the consequences of the initial disagreement. These theorems in-
tend to prove that conditionalizing on evidence “washes out” the disparity about pri-
ors because, as the amount of evidence increases, posterior probabilities tend to a 
limit.  
 A common criticism against subjective Bayesianism is that Convergence Theorems 
do not work when applied in actual scientific practice because the process of gathering 
evidence is severely constrained and cannot proceed indefinitely.7 Anyway, I do not 
think that those interested in combining IBE with Bayesianism are bound to endorse 
an overtly subjectivist standpoint on the priors. Consequently, they need neither full 
confidence on any theorems which set up conditions hardly fulfilled in “real science”. 
Again, explanatory goodness is at root of scientific inference. Scientists prefer hy-
potheses that seem likely insofar as they have explanatory value —recall that this is the 
psychological import of IBE. We have noted that prior probabilities are intimately re-
lated to appraisals of virtues like theoretical elegance, simplicity and unification. Now 
it should be added that radical subjectivism about the priors hardly fits with the exis-
tence of a shared methodological core for the scientific community. Perfect agreement 
about prior probabilities is not a plausible scenario, not even in science. But current 
science is a cooperative project and some degree of coincidence is necessary. Al-
though discrepancies about the priors are allowed concerning specific and controver-
sial examples, there is a general agreement about which factors must be taken into ac-
count in the assessment of priors. Translated into IBE’s terminology, the “perception” 
of explanatory goodness is rather homogeneous. The agreement is just a by-product 
of a highly institutionalized training process that reinforces some cognitive heuristics 
(on the cognitive mechanism involved here see Kuipers 2002). To acknowledge the 

                                                      
6 Stathis Psillos, a partisan of IBE, has argued that “the base-rate fallacy shows that it is incorrect to 

equate the best explanation of the evidence with the hypothesis that has the highest likelihood” (Psil-
los 2004, p. 86). While I endorse Psillos’s conclusion, I am not so sure that the base rate fallacy is the 
decisive rationale for it. I cannot pause to argue for that here. 

7 A critical discussion of Convergence Theorems can be found in Earman 1993, chapter 6. For a recent 
vindication of objective priors see Huber 2005. 
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collective dimension of science forces us to accept that social or pragmatic constraints 
operate on the priors. Consequently, although a purely subjectivist standpoint on the 
priors perhaps could be defended in some particular contexts, it does not seem ap-
propriate to account for scientific judgment in general.  
 IBE-Bayesians, like Lipton, can accommodate this fact by arguing that priors are 
implicit assessments of explanatory value. Discrepancies about the priors should be 
imputed to differences in educational contexts, to scientists’ personalities... Since, as a 
matter of fact, in scientific sub-communities there is a general agreement concerning 
the priors, it could be defended that, as a result of scientific education, discrepancies 
among scientists on the priors are not remarkable, except in particular circumstances. 
Nonetheless, this is not sufficient to sustain that priors —i.e., appraisals of explana-
tory merit— should be considered as a reliable guide to posterior probability. Recall 
that, according to the alleged epistemic role of IBE, as the initial estimates are subse-
quently modified by the impact of evidence, those hypotheses initially considered as 
good explanations by scientists are more probable than bad ones. Scientists’ agree-
ment on the priors discards radical subjectivism, certainly, but it does not make priors 
objective in the sense required by a genuine epistemic role. Consensus may well be a 
necessary condition for research in current science. But if it were a brute sociological 
fact, the tendency to focus on hypotheses that score better than its rivals concerning 
prior probability —that is, the tendency to prefer some particular features that make 
hypothesis good qua explanations— would be on the same footing as the tendency to 
wear white coats when working at laboratories, for instance.  
 A natural suggestion at this point is that scientists’ judgments about the initial 
plausibility of hypotheses convey the scientific lore about those kinds of hypotheses 
which have been successful in the past. In other words, prior probabilities are “our 
best estimates of the frequencies with which certain kind of hypotheses succeed” 
(Salmon 1996, p. 270). I will label this point of view as Frequentist-Bayesianism as an 
alternative to IBE-Bayesianism (Freq-Bay and IBE-Bay, shortly).  
 It is important to realize that Salmon’s proposal rejects an essential claim of IBE. 
A Frequentist-Bayesian may accept the aforementioned explanation on the existence 
of some degree of consensus about the priors. But now it is not explanatory virtue by 
itself that increases the prior probability, since more or less intuitive judgments about 
it are grounded on frequencies of success. In addition to this, she can add that dis-
agreements about priors may be right or wrong in a sense that goes beyond group 
conformity. An attribution of prior probability is wrong if it does not reflect the rate 
of past successes. The relevant technical term in Bayesian jargon is calibration. An agent 
is perfectly calibrated if there is a perfect match between her probability attribution of 
property L to individual a and the actual frequency of L in the appropriate class of 
reference to which a belongs (for a formal account, see van Fraassen 1983). 
 Someone could point out here that, even though a perfectly calibrated agent could 
know exactly the frequency of success in an idealized situation, scientists are not per-
fectly calibrated agents. Moreover, attributing an initial plausibility to a hypothesis is 
not commonly explicated in probabilistic terms.  
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 Salmon somehow anticipated such objections, but his remarks were really brief. He 
acknowledged that frequentism on the priors “does not imply that all scientists will 
agree on the numerical values or prefer the same theory” (Salmon 1996, p. 281) and 
also claimed that “the evaluation of prior probabilities clearly demands the kind of sci-
entific judgment whose importance Kuhn has rightly insisted upon” (id.). I interpret 
these quotations as follows. The success rate obtained in the past is an objective fact, 
but it may be really complicated to ascertain it. Anyway, even though in actual situa-
tions of theory choice “kuhnian qualitative judgments” may be inevitable, assessments 
of initial plausibility have a normative import insofar as they are disguised judgments 
about frequencies. Besides, in order to attribute an initial probability to a new hy-
pothesis it must be established what are the relevant respects of similarity between it 
and the old ones. From this perspective, prior probability is just an encoded measure 
of how much similar is the new hypothesis to the previous ones which were successful 
—presumably the similarity involved here is formal as well as in content. Prior prob-
abilities, in sum, are right or wrong insofar as they approximate the relevant frequen-
cies of past success. Although the information required to assess those frequencies is 
not accessible to us by now, the correctness of priors depends on what happens in the 
world. 
 The rationale for the frequentist interpretation is that after several centuries of do-
ing science we have learned the distinctive features of good scientific hypotheses. 
Simplicity, compatibility with other accepted theories, unifying power, are now pre-
ferred because hypotheses that possessed them in the past yielded better results than 
hypotheses that did not enjoyed them. It should be added that these methodological 
criteria evolve as the rest of our scientific knowledge about the world. But, even 
though they are revisable, they seem a very good, the best indeed, point of departure.  
 Now we have two interpretations of Bayes’s formula: IBE-Bay and Freq-Bay. Both 
include explanatory merit through prior probabilities, but they disagree on the inter-
pretation of the priors. Which one should be preferred? Before making the compari-
son, the frequentist interpretation deserves a closer look.  

3. A frequentist interpretation of the priors 

Salmon claimed that the frequentist interpretation of the priors is itself an empirical 
hypothesis. In the early seventies he pointed out that there were no reliable statistics 
on such matters, but he affirmed that “it is enough to have very very rough estimates” 
(Salmon 1970, pp. 85-86). Thirty years later he still maintained these opinions, but as 
far as I know, he never went deeper into details (see his papers included in Hon and 
Rakover 2001). However, if our estimates are so rough and there is no reliable evi-
dence to test them, we are at risk of turning Freq-Bay into a mere hint with no empiri-
cal advantage over an explanationist approach to the priors. Therefore, it is important 
to be more precise about how the frequentist hypothesis could be tested and how it could be sub-
sequently used to specify the priors of novel hypotheses.  
 Think again of h1 and h2 —the good and the “ugly” hypotheses, respectively. Let us 
assume that both are novel hypotheses and that we are concerned with how to set 
their priors. Suppose now that L contains all those hypotheses previously proposed in 
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the history of science that can be considered good ones from an explanatory point of 
view (the L-hypotheses, for “lovely” hypotheses). Stated in very general terms, Freq-
Bay’s line of reasoning is:  
 Most of L-hypotheses have been successful. 
 h1 is similar to L-hypotheses and h2 is not similar to L-hypotheses.  
 Therefore, h1 merits higher prior probability than h2. 
Admittedly, the frequentist interpretation of the priors is a second order hypothesis —
a meta-hypothesis— about past scientific hypotheses and testing it is not an easy task.  
 First of all, success is an empty word. What kind of past successes could be in-
voked in favour of —or against— the prior probability of a new hypothesis. Which 
are the relevant successful accomplishments of L-hypotheses? Since what is at issue is 
precisely the alleged link between explanatory merit and probability, an epistemic justi-
fication for good explanations —both current and past ones— cannot be provided by 
explanatory success, obviously.  
 Truth is other candidate for filling the gap. The aforementioned argument could be 
rephrased by saying that there is a higher proportion of true theories in those included 
in L than in the remaining. Therefore, we should confer higher prior probabilities to 
the former. Anyway, truth is particularly elusive for Bayesians. For a tautological 
claim, p = 1. For a true theory, presumably, p = 1. But an empirical theory is not a tau-
tology devoid of content. Consequently, from a Bayesian perspective, truth must be 
understood just as a limit for empirical hypotheses.8 Besides, theoretical truth is a dis-
putable notion for many philosophers of science. As an IBE-Bayesian puts it,  

... whatever the explanatory features happen to be, we can observe no correlation between those 
features and theoretical truth, for we do not know which of our theories are true. At most we could hope 
to observe a correlation between the features in question and continued empirical success, which 
is no help, for we know nothing about the proportion of empirically successful theories that are true. (Okasha 
2000, p. 699; my emphasis).  

Given all this, I think that it is desirable that Freq-Bay does not take any position on 
either side of the realism/antirealism debate. Identifying success with truth cannot be 
done on pain of giving a strong realist flavour to Freq-Bay. It is preferable then, not to 
take for granted realism and depart from observational success.  
 Freq-Bay goes, then, as follows. By and large, as evidence increased, L-hypotheses 
enjoyed a relatively long period of acceptance in contrast with non-L hypotheses. L-
hypotheses coped better with empirical testing than their counterparts. Then, if h1 is 
an L-hypothesis and h2 does not belong to L, it is more probable that h1 enjoy obser-
vational success than h2. Given that observational success has confirmational import, 
and confirmational import is understood in probabilistic terms in the Bayesian frame-
work, it is also likely that h1 enjoys higher posterior probability than h2. Now, let us 
grant that we get conclusive evidence from the historical record, that is, the percentage 
of L-theories which enjoyed a long-standing period of observational success is actually 

                                                      
8 However, verisimilitude and distance from truth are legitimate scientific values for some Bayesians. See, 

for instance, Maher 1993. 
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much higher than the percentage of non-L ones. Freq-Bay would conclude that “h1 
merits greater prior probability than h2.” 
 Someone could object that this is a non sequitur. Prior probabilities are based on 
evidence about the historical record of observational success. This evidence allows us 
to infer at most that prior probabilities refer to the probability of getting continued 
observational success, that is, to the probability of verifying the observational conse-
quences of h1 and h2, but not to the probability of the explanatory hypotheses —h1 
and h2— themselves in case that they are theoretical hypotheses. Therefore what we 
are entitled to infer from the evidence is a different conclusion, namely, that h1 is like-
lier to have observational success than h2.9  
 This objection may be pressing for those who think that there is a cleavage be-
tween the observational consequences and the theoretical hypotheses. But it is not a 
proper objection in this context. Given that we are trying to discern the respective ad-
vantages of two views about the priors, we must focus on the differences between 
them. For Bayesians, observational success is understood in probabilistic terms and it 
has specific effects on posterior probability. Needless to say, Freq-Bay and IBE-Bay 
agree that observational evidence may increase (or decrease) the probability of the theo-
retical hypotheses. Prior probability attributions for novel hypotheses can be seen as es-
timations about the future empirical prospects of competing hypotheses and, also, of 
their eventual posterior probabilities. No further qualifications related to the observa-
tional-theoretical distinction are required here.10  
 Nevertheless, the frequentist meta-hypothesis is still rather ambiguous. To begin 
with, it should be distinguished from the rule —if there is any rule— to set the priors. 
Notice firstly that calculating prior probabilities by equating p(h) —the probability of 
the new hypothesis under discussion— to p(h/e) —where e is the global historical re-
cord of past success—, does not work, since the algorithm demands a value for p(h) 
again. So no progress has been made. Besides, we should ascertain p(e/h), that is, the 
likelihood of past scientific hypotheses’ record of success given that h, the novel hy-
pothesis, is true, and this conditional probability hardly makes any sense. We must 
conclude, then, that the information conveyed by the historical record of success as a 
whole cannot be considered as the evidence on which the new hypotheses should be 
conditionalized. That information, however, is indeed relevant to the frequentist hy-
pothesis, since the latter is a general second-order hypothesis about the historical re-
cord of success of past first-order hypotheses. In the following paragraphs will try to 
confer a more detailed content to the frequentist second-order hypothesis. The pros-

                                                      
9 Radical sceptics about induction would not even accept such conclusion, of course. But we are not con-

cerned here with the refutation of overall scepticism about induction. 
10 Bas van Fraassen combines a particular brand of Bayesianism with agnosticism about theoretical hy-

potheses. According to him, theoretical agnosticism could be properly represented in a Bayesian for-
mat as complete vagueness of opinion, i.e., for theoretical hypotheses the prior probability equates to 
the interval [0, 1] (see van Fraassen 1989, pp. 189 ff., and van Fraassen 1998). It should be remarked, 
however, that van Fraassen’s agnosticism is grounded on a controversial notion of observability that 
is alien to the Bayesian framework (for a “Fraassenian” reply to a sophisticated version of the stan-
dard abductive defence of scientific realism, see Iranzo 2008a). 
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pects for testing it will be consequently improved. Then we will see how this proposal 
also suggests a simple rule for setting the priors. 
 Let H be the set of all hypotheses hi ever formulated by scientists. L is a subset of 
H which contains all the L-hypotheses and L’ is the complementary of L, that is, the 
subset of hypotheses which are non-L-hypotheses. Furthermore, E is the available 
evidence now, so p(hi/E) is the conditional probability of hi from our current epistemic 
perspective. Some second-order hypotheses about the success record of all scientific 
hypotheses ever formulated are:  
(a) Let  be the probability for the most probable hypothesis in L’. Then, for every  
hi  L,  p(hi/E)  .  
(b) Let  be a determinate threshold of probability (0    1). Let fL be the relative 
frequency of theories in L —and fL’ the relative frequency of theories in L’— whose 
probability is higher than . That is, 
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Then, mL  mL’ . 
 Since each of these meta-hypotheses stipulate an alleged sufficient condition to at-
tribute higher priors to L-hypotheses than to L’ ones, all they consist in a strong ine-
quality. Now let us compare them.  
 On my view, (a) is not a good option. It excludes the possibility that any hi  L has 
been conclusively refuted, that is, p(hi/E) = 0 is ruled out for every h (since  should 
be below zero and L’-hypotheses would enjoy negative probability!). In addition to 
this, (a) is a very strong requirement. Maybe L-hypotheses are more probable than 
L’-hypotheses in general, but not always. According to (a), in contrast, we are bound 
to accept that L-hypotheses long time ago discarded are more probable than all 
L’-hypotheses, even those that are still in the arena. But many theories in the past, af-
ter enjoying observational success during some period of time, were abandoned. Some 
of them were also regarded as brilliant explanations of a particular observational do-
main. However, as the amount of evidence increased, their probability decreased and 
now is very low on the available evidence. On the other side, we could find good ex-
amples of L’-hypotheses whose observational success is impressive (in Quantum 
Physics, for instance). The moral is that we should not compare the probability of the 
hypotheses taken one by one. The relevant comparison should be between the overall 
results of two different sets of hypotheses, L and L’.  
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 In contrast to (a), alternatives (b) and (c) allow that some L’-hypotheses may be 
more probable than some L-hypotheses. In particular, (b) assumes that good explana-
tions are highly probable. That is the point for setting a threshold. At first sight it 
sounds reasonable to focus on theories which are more probable than its negation. 
But even though the threshold is 0.5, for instance,11 and fL  fL’ , in some particular 
circumstances it could be unjustified to attribute a higher prior to a novel L-
hypothesis than to its L’ rivals. The reason is that the dispersion of probability values 
in L and L’ seems crucial since it may well occur that fL  fL’ , but mL’  mL. Even 
though the proportion of L-hypotheses above the threshold is higher that the corre-
sponding proportion of L’-hypotheses, if the average probability is higher for L’ than 
for L, should we attribute higher priors to L-hypotheses? 
 Alternative (c) gives more credence to L-hypotheses and is not affected by the dis-
persion of probability values in L and L’. Couldn’t we combine conditions (b) and (c)? 
Yes, but we shouldn’t, because the necessary connection between good explanations 
and high probability assumed by alternative (b) is not required. Freq-Bay claims that 
the basis of explanatory assessments is frequency. It gives a justification in probabilis-
tic terms for defending that good explanations deserve higher priors. But in order to 
justify such higher attributions of prior probabilities to L-hypotheses, it suffices if L-
hypotheses generally make the best in comparison to L’-hypotheses, even though mL is 
below 0.5. Besides, our particular version of the frequentist meta-hypothesis suggests 
an easy rule to set the priors: attribute to the novel hypothesis the average value 
found. That is, 

hi  hi  L, then p(hi) = p(hi/(mL = x)) = x 

hi  hi  L’ , then p(hi) = p(hi/(mL’ = y)) = y 

This rule is formally similar to some other rules proposed —like Lewis’s Principal 
Principle, van Fraassen’s Reflection Principle, Gaifman’s “expert functions”—, al-
though its rationale is different.  
 The idea that past success may be useful to foresee future success is a reasonable 
claim, save for those who are sceptics about induction, so I take it for granted in my 
argument. The problem for us is not the justification of induction but, rather, the jus-
tification of scientists’ preferences for explanatory rewarding theories within the 
Bayesian framework. From a general perspective my answer is the same as Salmon’s 
one, namely, that the initial plausibility assigned to extant scientific hypotheses some-
how reflects the success obtained by other hypotheses in the past. However, I have 
tried to go beyond his sketchy suggestion. To sum up my proposal:  

- the justification of scientists’ preferences for explanatory merit depends on the 
correctness of a conjecture —the “frequentist meta-hypothesis”, as I call it— 

                                                      
11 Peter Achinstein has suggested a threshold of 0.5 for defining evidence. A necessary condition for e to 

be evidence for h —a good reason to believe that h— is that p(h/e)  0.5 (Achinstein 2001, chapters 6 
and 7). I endorse this condition in Iranzo, 2008b. 
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about the history of science: good explanations are more successful than bad 
ones; 

- the meta-hypothesis relates all scientific hypotheses devised in the history of 
science to the available evidence right now; 

- success should be understood in probabilistic terms: probability conditioned to 
the evidence available now p(h/E); 

- a detailed interpretation of the meta-hypothesis asserts that sounds initially 
plausible is that the average value of p(h/E) for explanatory valuable hypotheses 
is higher than the average value for explanatory defective ones;  

- insofar as this conjecture is sound, novel hypotheses that are explanatory valu-
able deserve higher priors than their defective rivals; 

- mL and mL’, that is, the average values of p(h/E) for explanatory lovely and non-
explanatory hypotheses, respectively, are the recommended values for the initial 
probability of novel hypotheses —provided that they can be somehow esti-
mated.  

After giving specific content to the frequentist meta-hypothesis we are in a better po-
sition to compare IBE-Bay to Freq-Bay.  

4. The redundancy of empirical testing? 

The subjectivist view about the priors was mentioned above. In the end, prior prob-
abilities are nearly irrelevant for subjective Bayesians, because they rely on the evi-
dence’s power to wash them out through a convergence process. However, for Freq-
Bay and IBE-Bay, as they were characterized in section 2, priors are not just a device 
to make the required calculations. Non-subjectivist Bayesians accept that conditionali-
zation on evidence is a good policy to learn from experience, of course. But, given 
that the priors are a normative/objective constraint for them, if a hypothesis had a 
very high prior probability —or if it were a very good explanation—, perhaps we 
should not worry about how to test it. High priors should be considered as highly reli-
able indicators of future empirical success and, consequently, of future increments in 
posterior probabilities. Needless to say, a theory of confirmation with such conse-
quence —the redundancy of empirical testing— would be severely impaired, at least 
as a theory about science as we know it.12  
 Notice that this question does not arise in the subjectivist framework. Condition-
alization to experience does the whole work leading to the consensus. It is the non-
subjective status of (high) priors that suggests the potential redundancy of empirical 
tests. In the remainder of the paper I will discuss whether “the redundancy of empiri-
cal testing objection” is a serious risk for any of both versions of Bayesianism, Freq-
Bay and IBE-Bay.  

                                                      
12 On the reasons for relying on experience, not only in science but in general, see my paper “On the 

Epistemic Authority of Experience” (in press). 
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 The redundancy objection against IBE-Bay goes as follows: granted that explana-
tory merit has confirmational value, if the explanatory merit of h1 —the lovely 
hypothesis— is very high, why do we need empirical testing for it? Couldn’t its prior 
probability be so high that it would render useless to test it? A direct reply is that the 
explanatory merit of a hypothesis cannot be so high as to turn empirical testing into a 
dispensable constituent of scientific practice. But this reply clashes with our assess-
ments of explanatory goodness. In everyday contexts there are explanations so good 
that we are sure they are true. We do not need to compare them with some bizarre al-
ternatives. Admittedly, things are more complicated in science. We remarked earlier 
that, to some extent, the explanatory merit of a scientific hypothesis depends on its re-
lation to a particular explanandum. The situation then is similar to what occurs in eve-
ryday contexts. It is not difficult to find historical examples of hypotheses which were 
considered really good qua explanations (at least from the perspective of the scientific 
community at time t ). In consequence, there are highly probable hypotheses for the 
IBE-Bayesian.  
 The foregoing suggests that, in principle, there is no reason not to think that prior 
probabilities could be high —assuming that priors’ values should exactly parallel com-
parative assessments of explanatory merit. Nevertheless, IBE-Bayesians could try a 
different answer to meet the challenge. Prior probability is based on generic considera-
tions which are independent of the specific observational consequences of h1. But, as 
we noticed in section 1, some aspects of explanatory value are intrinsic properties of 
the hypothesis while some others have to do with the relation between the hypothesis 
and the evidence. And if explanatory value should be included not only in p(h1) but in 
p(e/h1) as well, then, the redundancy objection is not well-founded. It concludes that 
p(h1) is high because h1 is very good qua explanatory hypothesis, but it may well be 
that h1 is very good from an explanatory point of view just because p(e/h1) is high, 
even though p(h1) is notably low. In that case h1 would still be a good explanation, but 
since its prior probability would be nearly irrelevant for that, empirical testing still 
seems mandatory for h1 (at least it is non-redundant).  
 Unfortunately, I do not think that IBE-Bay could maintain that h is a good expla-
nation even though p(e/h) is high and p(h) is low. The numerator of Bayes’s formula 
—[ p(e/h)  p(h)]— is the Bayesian translation, so to say, of explanatory merit, so a 
good explanatory hypothesis is an explanation that enjoys a high value for the numera-
tor. And we cannot get such high value with a high likelihood unless p(h) is high too 
—recall that probability function ranges from 0 to 1, and a low initial probability can 
dramatically decrease the value for the numerator. Therefore, if p(e/h) were high and 
p(h) low, h would not be a good explanation. Again, if p(h) is high, why should we con-
cern about empirical tests for h?  
 Apparently, the prospects for Freq-Bay are not better. According to it, prior prob-
abilities are based on objective and empirical frequencies. Insofar as priors are based on 
that, there is no reason not to take them as seriously as posterior probabilities. The 
difference is, of course, that posterior probabilities take into account specific observa-
tional —empirical— consequences of the hypothesis. But a high value for h1’s prior 
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probability means that h1 is well supported by the evidence even though it is the sort 
of “indirect” evidence provided by the frequentist meta-hypothesis.  
 Nevertheless, it is not very complicated for the frequentist to defend the claim that 
priors cannot be high, even for hypotheses that enjoy several explanatory virtues. Re-
call that the version of the frequentist hypothesis I favoured in section 3 demands that 
mL  mL’ , and it is worth noticing here that this condition may be fulfilled even though 
both average values are not high. We are still waiting for a complete probabilistic rank-
ing of all scientific hypotheses ever postulated. It is doubtful whether that task could 
eventually be accomplished. Anyway, we should expect that the values of mL and mL’ 
are low, since many of the past theories have been discarded because their probabili-
ties are low, even zero, according to the available evidence.  
 Just a final remark. We have accepted that scientists’ assessments of explanatory 
merit occasionally may be high. But the frequentist-Bayesian says that prior probabili-
ties are disguised assessments of relative frequencies of success and that they, in gen-
eral, should be low. Is there any contradiction here? I do not think so. Scientists’ plau-
sibility assessments operate through rules of thumb that try to discern those features 
which have been associated to success in the past. There are psychological biases 
among scientists in favour of some methodological preferences. These preferences are 
those reinforced in the learning process accomplished for becoming a scientist and 
very often scientists themselves can hardly make them explicit. Now, according to 
IBE-Bay the value of the new hypothesis’ prior probability is exclusively grounded on 
the qualitative scientific appreciation of its explanatory merit. But for Freq-Bay it is 
not necessary that scientific judgment exactly matches the value found in the historical 
record. Rather, the important thing is that, when confronted with a set of rival hy-
potheses, scientists’ preferences agree with the ordered list obtained by the rule pro-
posed in section 3.  

5. Conclusions 

The prospects for bayesianizing IBE crucially depend on the interpretation of the pri-
ors involved in scientific judgment. I have distinguished two interpretations, IBE-Bay 
and Freq-Bay, that disagree on the ultimate rationale for assessments of explanatory 
merit. While IBE-Bay demands an epistemic import for explanatory value, it is not 
clear how it can substantiate this claim. I have argued that Freq-Bay, in contrast, al-
lows a genuine epistemic role for explanatory merit via its historical link to success 
and probability. Besides, Freq-Bay fits better with two basic facts about science than 
IBE-Bayesianism. The first one is that a large proportion of the past scientific hy-
potheses have a low probability. Certainly, this is a conjecture by now, but I do not 
think it is pure guesswork. The second one is that scientists make great efforts to test 
hypotheses. The fact is that they look for confirming or refuting evidence even for 
those hypotheses which are really good as explanations.  
 The frequentist approach has an additional slight advantage over IBE-Bay. Ironi-
cally, it is better than IBE-Bay from an explanatory point of view. In section 2 we al-
luded to a basic consensus among scientists about the values which should be taken 
into account to assess the priors. This fact could be explained by IBE-Bay as a result 
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of scientific education. Frequentists would not deny such explanation. But they could 
also explain why those explanatory values are precisely the ones favoured by scientists: 
because they are linked to observational success and maximization of probability. Sci-
entific education is well suited for obtaining agents who are good trackers of those 
epistemic values. After all, this is one of the goals scientific education has been de-
signed for.  
 On account of all this my conclusion is that the explanationist approach to Bayes’s 
Theorem afforded by IBE-Bay is seriously flawed.  
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