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ABSTRACT: Two key ideas of scientific explanation −explanation as causal information and explanation as unifica-
tion– have frequently been set into mutual opposition.  This paper proposes a “dialectical solution” to this 
conflict, by arguing that causal explanations are preferable to non-causal ones, because they lead to a higher 
degree of unification at the level of explaining statistical regularities. The core axioms of the theory of causal 
nets (TC) are justified because they offer the best if not the only unifying explanation of two statistical phe-
nomena: screening off and linking up. Alternative explanations of the two phenomena are discussed and it is 
shown why they don’t work. It is demonstrated that although the core axioms of TC are empirically vacuous, 
extended versions of TC have empirical content by means of which they can generate independently testable 
predictions. 
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RESUMEN: Con frecuencia se han planteado como contrapuestas dos ideas clave en la explicación científica (explicación 
como información causal y explicación como unificación). El presente artículo propone una “solución dialéc-
tica” argumentando que las explicaciones causales son preferibles a las no-causales porque aquellas comportan 
un mayor grado de unificación en la explicación de regularidades estadísticas. Los axiomas centrales de la teoría 
de redes causales (TC) están justificados porque ofrecen la mejor, si no la única, explicación unificada de dos fe-
nómenos estadísticos: neutralización (screening off) y vinculación (linking up). Se discuten las explicaciones al-
ternativas de estos dos fenómenos y se razona por qué no funcionan. Se demuestra además que aunque los axio-
mas centrales de TC son empíricamente vacuos, las versiones extendidas de TC tienen un contenido empírico 
gracias al cual pueden generar predicciones independientemente contrastables. 
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1. Introduction: Causality or unification? A dialectical solution

Since the earliest times of mankind, human beings of all cultures have explained regular 
connections of events in term of causal connections. Evolutionary psychology teaches us 
that the construction of causal models is a characteristic ability of homo sapiens (Toma-
sello 1999), and cognitive psychologists have found that causal modelling appears spon-
taneously in very early stages of childhood (Sperber et al. 1995). In accordance with these 
findings, it is a deep-seated common sense intuition that all regular connections between 
events that we observe have their explanation in terms of cause-effect relations. Elaborating 
this intuition, a variety of philosophers of science have argued that all good scientific expla-
nations are causal (e.g. Railton 1978, Salmon 1984, and Strevens 2008), or more generally, 
that the metaphysics of causality is the basis of our understanding of the world (cf. Beebee 
et al. 2009, parts II and III).
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These intuitions stand in stark contrast to the perennial difficulties philosophers have 
had when trying to justify causality as something ontologically real. According to Hume’s 
fundamental sceptical challenge, the classification of correlated events into causes and ef-
fects doesn’t correspond to anything real “out there in the world” – only the correlations 
are real, while causality is a mere habit of our cognitive system. Since then, many philoso-
phers have renewed and elaborated Hume's challenge (famously Russell 1912/13 and more 
recently Norton 2009 and Psillos 2009). Following these criticisms of causality, there is an 
opposing camp of philosophers of science who argue that the characteristic mark of good 
scientific theories and explanations is not their causal nature, but their power of unifica-
tion, i.e., their ability to predict and explain a variety of empirical phenomena in terms of a 
small number of basic principles. The idea that unification is the main goal of scientific the-
ories has been articulated by Mach (1883, 586f) and Whewell (1837). More recently, it has 
been proposed that unification is the major feature of scientific explanations, by Friedman 
(1974), Kitcher (1981), Schurz/Lambert(1994), Schurz (1999) and de Regt (2006). These 
authors see the main goal of explanation as to provide a deeper understanding of the empir-
ical facts by means of unifying them.

These two paradigms of scientific explanation —explanation as causal information 
versus explanation as unification— have frequently been set into mutual opposition (cf. 
Kitcher 1989, Salmon 1989, 180-186, de Regt 2006, see Schurz 2014). In this paper I will 
propose a "dialectical" solution of this conflict: I will argue that one reason why causal expla-
nations are preferable to non-causal explanations is that they lead to a higher degree of uni-
fication. I don't say that this is the only reason: a second reason for the preferability of causal 
over non-causal explanation is that only the former but not the latter can inform us about 
practical possibilities of producing intended effects by the right kinds of actions or interven-
tions. However, causality cannot be reduced to intervention possibilities, since not all parts 
of nature can be changed by human interventions. What this paper intends to show is that 
independently from this practical advantage the great theoretical advantage of the assump-
tion of causal principles lies in their unification power in the explanation of empirical reg-
ularities. More precisely, we want to show that there exists a general theory of causality, ab-
breviated as TC, which offers the best and most unifying explanation (among all available 
explanations) of two (in)stability properties of statistical dependencies with regard to con-
ditionalization: screening off and linking up. In other words, we think that the general prin-
ciples of TC can be justified by means of an inference to the best explanation (IBE). Since the 
principles of TC provide unified higher-level explanations of statistical regularities and their 
(in)stability properties, explanations of single events whose general premises offer causal in-
formation contribute more to this unification than single event explanations whose general 
premises do not offer causal information (we return to this argument in sec. 4).

The theory of causality (TC) that we have in mind is the theory of causal nets that has 
been developed by SGS (= Spirtes, Glymour, and Scheines 2000) and Pearl (1988, 2009), 
with forerunners such as Reichenbach (1956), Blalock (1961), and Suppes (1970). This pa-
per intends to contribute to this theory by showing that directed cause-effect relations as 
axiomatized by TC are the best —in the sense of most unifying— explanation of screen-
ing off and linking up. We consider alternative explanations and highlight their problems 
and disadvantages. To this end, we understand probabilities in the statistical sense, as dis-
positions of repeatable events to produce inductively inferred limiting frequencies; this ob-
jective interpretation of probability is important for our attempt to justify the attribution 
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of causal connections, by their power to explain probabilistic dependencies as objective 
features of the world (as opposed to subjective features of beliefs). It is an intended con-
sequence of this view that causal claims involving singular events have to be backed up by 
probabilistic regularities. 

Our account makes use of mathematical variables. A variable is a function 
X: D → Val(X) from a domain D of individuals to its value space Val(X) = {x1, x2, ...}, 
which is a family of properties or a set of numbers. If X denotes colour, for example, then 
Val(X) = {red, green,...} and X assigns a colour X(d) to every individual d ∈ D. For exam-
ple, that the object d has the colour green is expressed by “X(d) = x2”, where “x2” denotes 
“green” (etc.). We also admit that D consists of n-tuples of individuals, e.g. individuals at 
certain time-points. Simple dichotomic property-pairs are represented by binary variables 
XF with value space {F, ¬ F} (e.g., {red,not-red}). We make use of the following notational 
conventions:

X,Y,... are variables and U,V,... sequences of variables.

Lower-case letters “x” (or “xi”) stand for values of X, and lower-case “u” (or “ui”) for se-
quences of values of the respective variables in U.

P(X1, ..., Xn) is a (statistical) probability distribution over a suitable algebra AL over the 
space of values, i.e. P: AL(Val(X1) × ... × Val(Xn)) → [0,1]).

“P(x)” abbreviates “P({x})” and represents “P(X(α)=x)”, i.e. the probability that X 
takes value x in the underlying domain D (the individual variable α is bound by P).

Likewise, “P(S)” abbreviates “P(X(α) ∈ S)”, “P(¬ x)” abbreviates “P(X(α) ∉ x)”, 
“P(x,y)” abbreviates “P(X(α) = x ∧  Y(α) = y)”, and "P(x|y)" abbreviates 
"P(X(α) = x|Y(α) = y)”, i.e. the conditional probability of x given y, provided P(y) > 0.

Two variables X,Y are said to be probabilistically dependent (DEP(X,Y)) iff at least 
some of their values are dependent; they are probabilistically independent (INDEP(X,Y)) 
iff all of their values are independent. More generally, probabilistic (in)dependence be-
tween X and Y, conditional on a sequence of variables U, is defined by any one of the fol-
lowing equivalent formulations (a) – (c):

(1) DEP(X,Y|U) iff (a) ∃x,y,u: P(x|y,u) ≠ P(x|u) and P(y,u) > 0, or
  (b) ∃x,y,u: P(y|x,u) ≠ P(y|u) and P(x,u) > 0, or
  (c) ∃x,y,u: P(x,y|u) ≠ P(x|u) × P(y|u).
 INDEP(X,Y|U) iff not DEP(X,Y|U), i.e. iff ∀x,y,u: P(x|y,u) = P(x|u) or
 P(y,u) = 0 (with equivalent formulations as above).

The equivalence of (a) with (b) makes clear that probabilistic dependencies are always 
symmetric. Unconditional dependence is defined as dependence conditional on the empty 
sequence: DEP(X,Y) iff DEP(X,Y|∅), and likewise for unconditional independence. 
Moreover, the definition of probabilistic dependence is generalized to sequences of vari-
ables U,V,W via the following definition: DEP(U,V|W) iff ∃u,v,w: P(u|v,w) ≠ P(u|w) and 
P(v,w) > 0.

Probabilistic (in)dependence between values of variables is defined as follows: 
DEP(x,y|u) iff P(x|y,u) ≠ P(x|u) and P(y,u) > 0 and INDEP(x,y|u) iff P(x|y,u) = P(x|u) 
or P(y,u) = 0. If P(x|y,u) > P(x|u), then x depends positively on y, and if P(x|y,u) > P(x|u), 
then x depends negatively on y.
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2. Causality obtained from an inference to the best explanation

2.1. Causality as a theoretical concept: a comparison with Newtonian force
According to the findings of contemporary (post-positivistic) philosophy of science, scien-
tific theories contain theoretical concepts such as atom, force, etc.1 Theoretical concepts are 
not definable in terms of observable phenomena; instead, they offer unified explanations of 
them in terms of hidden structures. Nor is a primitive theoretical concept definable by a 
single theoretical principle or axiom. Rather, its semantic content is characterized by a the-
ory, or at least by the core of a theory, to which this concept belongs. Classical physics, for 
example, stipulates gravitational forces as unobservable causes of the trajectories of physi-
cal bodies. The “meaning” of “gravitational force” is not determined by a single definition, 
but by the joint effect of the synthetic axioms of Newtonian mechanics which, when com-
bined, explain a large variety of empirical phenomena. We suggest that causality should, in 
precise analogy to force, be understood as a theoretical concept whose meaning can be ex-
plicated by the core axioms of the theory of causality, TC. We thus assume that the empiri-
cal (or non-theoretical) concept of TC is the notion of a probability distribution over a set 
of variables, whose properties are to be explained by assuming theoretical cause-effect rela-
tions between these variables according to the principles of TC.

In order to be empirically significant, it is not sufficient for theoretical concepts and the 
axioms characterizing them to offer “some” explanations of the empirical phenomena. These 
explanations must not be entirely post-facto, but should be able to generate use-novel empir-
ical content, i.e. potentially novel predictions by which they are independently testable.

Of course, there is no guarantee that a theoretical concept that offers unifying explana-
tions does also refer to a really existing entity. Purely instrumental interpretations of theo-
retical concepts as useful means of unifying empirical phenomena are always possible. But 
the more explanatory and predictively successful a theory becomes, the more plausible it is 
to assume that the theoretical concepts that produce this success actually do refer to some-
thing real. The concept of force in Newtonian physics is explanatory successful to an admi-
rably large extent. In this paper we attempt to show that the concept of causality can also be 
justified by appeal to its success in offering unifying explanations.

The question of the empirical content of TC will be briefly tackled in section 3. The 
focus of this section will be a demonstration of how TC can be justified by appeal to its ex-
planatory power. The decisive question which we must answer for this purpose is: What 
does causality explain?

The answer cannot be that every empirical regularity is explained by a corresponding 
causal power. For every regularity, one can postulate a corresponding causal connection 
that “explains” it post facto. Causal “explanations” of this sort would amount to a mere met-
aphysical duplication of empirical regularities that can neither achieve explanatory unifica-
tion nor generate new empirical content. Therefore Ockham’s razor dictates their elimina-
tion.

Causality is also not needed to explain why observed regularities are inductively pro-
jectible, as some philosophers have suggested (cf. Fales 1990, ch. 4). The inductive project-
ibility of regularities is already explained by assuming that they are backed up by lawlike 

1 Cf. Carnap (1956), Lewis (1970), Sneed (1971), Balzer et al. (1987), Papineau (1996), French (2008).
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connections (Armstrong 1983, part 1). Causality, however, goes beyond inductive project-
ibility or lawlikeness: regularities connecting the joint effects of a common cause, for in-
stance, may be perfectly lawlike although they are obviously non-causal.

To withstand Hume’s sceptical challenge one has to answer the question of why cause-
effect relations are needed at all, instead of simply accepting lawlike regularities as primitive 
facts. Our answer is that cause-effect relations yield the best available explanation for two 
otherwise mysterious (in)stability properties of probabilistic regularities in regard to condi-
tionalization: screening off and linking up.

2.2. Explaining screening off
Since screening off and linking up are the major explananda of causal relations, we have to 
characterize them in an empirical, i.e. purely probabilistic way, without presupposing causal 
notions. We first turn to screening off:

(2) X and Y are screened off by Z iff (i) DEP(X,Y) and (ii) INDEP(X,Y|Z).

Examples:
(2.1) Barometer reading (X) storm coming (Y) atmospheric pressure (Z)
(2.2) Light switch (X) Light bulb (Y) Electric current (Z)
The probabilistic dependence between X and Y disappears when one conditionalizes 

on arbitrarily chosen but fixed values of a third variable Z. Condition (2) implies the prob-
abilistic dependencies DEP(X,Z) and DEP(Y,Z).2 We assume the usual case that these de-
pendencies are not screened off by Z. Moreover, we focus on robust (or faithful) cases of 
screening off in which the disappearance of the probabilistic X-Y dependence after condi-
tionalization on Z is stable under small changes of the involved conditional probabilities 
(we shall see in section 3.2 that most cases of screening off are robust in this sense.)

Intuitively, we immediately interpret the correlations in (2.1) and (2.2) as produced 
by directed causal relations: We believe that we “know” that screening off occurs because Z 
is a common cause in (2.1) and an intermediate cause in (2.2). In order to achieve a philo-
sophical justification of causality, however, we must free our mind from prefabricated causal 
intuitions and assume for a moment that we only know the variables’ probability distribu-
tions. If we do that, we are confronted with a riddle: Why does the X-Y correlation disap-
pear when fixing Z’s value?

The best available explanation of robust screening off phenomena —in fact, the only 
good explanation we can think of— is the following: the two dependencies between Z and 
X and between Z and Y directly reflect causal connections,3 while the dependence between 
X and Y results from these causal connections and is thus mediated (or transmitted) by Z. 

2 Proof: We have P(X|Y) = ΣzP(X|z,Y) × P(z|Y). Assume the contrary: INDEP(Z,Y), i.e. ∀z: P(z|Y) = 
P(z). Moreover ∀z: P(X|z,Y) = P(X|z) by the screening off condition (3)(ii). So we continue: ... = 
ΣzP(X|z) × P(z) = P(X). Thus INDEP(X,Y) follows, contradicting the assumption. (For INDEP(Z,X) 
the proof is similar, only X and Y exchange their role.)

3 The claim that the causal connection between X and Z in fig. 1 is “direct” is relative to the set of vari-
ables {X,Y,Z}. 



78 Gerhard Schurz

Theoria 30/1 (2015): 73-95

This situation is depicted in fig. 1. If we consider subsets of individuals with different X-
values, these individuals will have differently distributed Y-values only because they have 
differently distributed Z-values. So if we conditionalize on a subdomain of individuals with 
fixed Z-values, individuals with different X-values will no longer have differently distrib-
uted Y-values, i.e. the probabilistic dependence will no longer be transmitted from X to Y.

;� � =� � <�

Fig. 1.  Explanation of screening off by binary causal relations (“···” stands 
for “probabilistic dependence” and “–” for “direct causal connection”).

Note that explaining screening off only requires assuming an undirected binary “causal” de-
pendence relation; no direction of causation is needed so far. Directed causation is, how-
ever, required for discriminating screening off from linking up. Moreover, when we call the 
dependence relation “causal” we presuppose, of course, that the involved variables refer to 
pairwise analytically (logically, mathematically) independent attributes or types of events. If 
variables are analytically dependent, then the appropriate explanation of a screening off re-
lation is not a causal, but a semantic connection between variables (for illuminating exam-
ples cf. Williamson 2005, sec. 4.2).

Before we turn to linking up and directed causation, we show why prominent alterna-
tive attempts fail in explaining screening off.

First of all, duplication accounts cannot explain screening off. Duplication accounts 
come in two varieties: (i) Humean-reductionistic (causality is “nothing but” correlation) 
and (ii) naive-metaphysical (every correlation is “backed up” by a corresponding causal con-
nection). Both types of account would postulate a direct causal connection between every 
two correlated variables X and Y, as shown in fig. 2(a). But then they cannot explain why Z 
screens off X from Y; this fact would remain mysterious. It is precisely the assumption that 
not all correlations correspond to direct causal connections which explains screening off.4

; �������= �����������< <���;

�������=

(a) (b)
Fig. 2.  (a) Duplication accounts cannot explain why DEP(X,Y) vanishes. 

(b) The blocking theory cannot explain why DEP(X,Y) vanishes 
for all Z-values on which one conditionalizes.

4 There are more refined versions of duplication accounts which have similar problems. According to a 
referee of this paper, a Humean duplication account should assert that causality is nothing but the pat-
tern of probabilistic (in)dependence. However, this doesn’t seem to be correct, since the same type of 
probabilistic pattern —namely a conditional correlation— may be produced by different causal pat-
terns (common causes, indirect causes, common effects, etc.).
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A second alternative explanation of screening off would be the blocking account: Some Z-
values can block the causal connection between X and Y, as depicted in fig. 2(b). But this 
hypothesis cannot explain why the X-Y correlation vanishes when conditionalizing on ar-
bitrary Z-values. It seems that the only explanation that works is the one given above: Z 
screens X off from Y because Z mediates X’s dependence on Y.

A final objection might point out that it is impossible even to ask for an explanation 
of screening off without already presupposing causal notions, because all explanations are 
causal. However, we don’t understand the explanation of screening off in a causal sense for 
otherwise we would end up in an infinite regress. In accordance with many philosophers of 
science, we assume that there is a non-causal sense of “explanation” which consists in unifi-
cation and in the generation of potential predictions.

2.3. Explaining linking up
Let us now turn to the phenomenon of linking up. Some sets of variables {X,Y,Z} have 
probability distributions that feature exactly the opposite (in)stability properties of screen-
ing off. We call this phenomenon “linking up” and define it again in a purely probabilistic 
(i.e. non-causal) way:

(3) X and Y are linked up by Z iff INDEP(X,Y) and DEP(X,Y|Z).

Example:
Angle of the sun (X) length of a tower (Y) length of its shadow (Z)

Two independent variables X and Y become linked up by Z iff they become dependent af-
ter conditionalization on some values of Z. The position of the sun, for example, is not cor-
related with the height of a tower, but it becomes correlated if we conditionalize on the 
shadow’s length. If the tower’s shadow is long, for instance, we can infer that the solar alti-
tude must be low if the tower is short. As in screening off scenarios, (3) implies DEP(X,Z) 
and DEP(Y,Z). Again we focus on robust cases of linking up.

Let us once more put aside prefabricated causal intuitions. Then we face a second rid-
dle: Why do two formerly independent variables X and Y become correlated when we con-
ditionalize on certain Z-values? Undirected causal relations cannot explain both screening 
off and linking up. To explain linking up, Z must again act as a mediator between X and Y. 
So the undirected causal relations in the linking up scenario must have the same structure 
as in the screening off scenario depicted in fig. 1. But if the causal structure should be able 
to explain both screening off and linking up, it cannot be the same in these two cases, be-
cause the two phenomena involve opposite probabilistic (in)stability effects.

The best available explanation for screening off and linking up —again the only good 
explanation we can think of— is to assume that causal relations are directed: In what fol-
lows “X → Y" expresses that X exerts a causal influence on Y that is “direct”, i.e. unmedi-
ated relative to the given the set of variables V. The way that this direct causal influence is 
physically realized is not specified by TC. However, two assumptions are required that are 
precisely formulated in sec. 3.1 and informally stated as follows:

— Productivity (P): “Ceteris absentibus” X → Y implies a probabilistic dependence 
between X and Y, and
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— Causal connection (C): Probabilistic dependencies are the result of directed causal 
connections, which transmit probabilistic influence from causes to effects, but not 
from effects to causes.

We can now explain screening off and linking up phenomena as follows. In both cases, Z 
mediates between X and Y. So we have three possible directed causal structures as candi-
dates for explaining these phenomena:

(a) X → Z → Y (or X ← Z ← Y): Z is an intermediate cause (between X and Y).
(b) X ← Z → Y: Z is a common cause (of X and Y).
(c) X → Z ← Y: Z is a common effect (of X and Y).

The first two structures explain screening off; the third one explains linking up.

Explaining screening off
(a) Intermediate cause (X → Z → Y): Y depends on X because a change of X-values 

causes a change of Z-values which, in turn, causes a change of Y-values (DEP(X,Y)).
(b) Common cause (X ← Z → Y): Y depends on X because changes of X-values are 

caused by changes of Z-values which also cause changes of Y-values (DEP(X,Y)).
In case (a) as well as case (b), X-value variations can lead to Y-value variations only due to Z-
value variations; thus fixing the value of Z renders X and Y independent (INDEP(X,Y|Z)).

The logical structure of both explanations is this: From X → Z in case (a), or from Z → X 
in case (b), we infer DEP(X,Z) by (P); likewise we infer DEP(Z,Y) from Z → Y and (P). For 
explaining DEP(X,Y) we must assume that the the causal models (a) and (b) satisfy the fol-
lowing condition of dependence transitivity (DT): ∃x,y: Σz ∈ Val(Z)P(y|z) × P(z|x) ≠ Σz ∈ Val(Z)
P(y|z) × P(z). (DT) is not probabilistically valid (except for binary variables); rather (DT) is 
a kind of faithfulness assumption (see sec. 3). Given (C), (DT) is a sufficient (and necessary) 
condition for DEP(X,Y) to hold in the causal structures (a) and (b) (a proof of this is given in 
(11.2)(a), sec. 3.1). INDEP(X,Y|Z) follows from condition (C) applied to the causal struc-
tures (a) and (b); this is obvious from (C)'s precise formulation in sec. 3.1, since X is not d-
connected with Y given Z is fixed. This completes the explanation.

Explaining linking up:
(c) Common effect (X → Z ← Y): Y doesn't depend on X because a change of X-values 

causes a change of Z-values which, however, is not accompanied by a change of Y-
values, because value-changes are not transmitted from an effect to its cause. Fixing 
Z to certain values will render X and Y dependent (DEP(X,Y|Z), as explained in 
the sun-tower-shadow example (3).

The logical structure of this explanation starts again with the observation that by axiom 
(P), X → Z and Z ← Y imply DEP(X,Z) and DEP(Z,Y), respectively. By (C), no probabi-
listic influence of a cause X on its effect Z can be transmitted to Z's other cause Y; so “ce-
teris absentibus” X and Y are probabilistically independent, i.e. INDEP(X,Y). In order to 
explain DEP(X,Y|Z) we must assume the condition of dependence-overlap (DO): ∃x,y,z: 
Dep(x,z) ∧ Dep(z,y). Like condition (DT), condition (DO) is a kind of faithfulness as-
sumption (a proof that INDEP(X,Y) and (DO) imply DEP(X,Y|Z) for the causal struc-
ture (c) is given in (11.2)(b), sec. 3.1). This completes the explanation.
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We now turn to the discussion of some further alternative explanations in terms of di-
rected causal arrows. A well-known alternative is the time-honoured world view of occa-
sionalism that was held as an alternative to the causal-naturalistic world view. Occasionalism 
claims that correlations between (kinds of) events are not to be explained by cause-effect rela-
tions between these events; rather all events are the direct effect of God’s will. Thus, God is 
the common cause of all events which are correlated because of their being joint effects of this 
cause. However, if this were true, it would be impossible to screen off two correlated events 
from each other by fixing the value of a third event: this possibility can only be explained by 
assuming direct cause-effect relations between the events themselves (see fig. 3).

; ���= <
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Fig. 3.   Alternative explanation by occasionalism: This world-view cannot explain 
why it is possible to screen off X from Y by conditionalizing on Z.

A defender of occasionalism may point out that screening off occurs in fig. 3 because God 
wants only certain but no other combinations of the values of the variables X, Y, and Z. 
This would mean that God causes the variables of our world not by separated causal ar-
rows, but holistically, in the sense that we have to draw just one causal arrow from God to 
the entire system of variables: GOD → (X,Y,Z). This is a possible but less informative and 
less unifying explanation, since the explanatory work is no longer done by the causal struc-
ture, but entirely by the probability distribution P(GOD,(X,Y,Z)).

With help of directed arrows, we are even able to explain why certain cases of screening 
off and linking up are non-robust. A non-robust scenario in which Z screens off X from Y 
could, for example, be explained by the causal structure in fig. 4(a): the positive conditional 
dependence due to X →+ Z +← Y and the negative dependence due to X →– Y cancel out. 
Thus, DEP(X,Y) and INDEP(X,Y|Z), though Z is a common effect of X and Y. Schurz/
Gebharter (2015) call this situation one of unfaithfulness due to cancelling paths. Unfaith-
ful independencies are not robust, since small changes of the involved conditional prob-
abilities turn them into dependencies. An analogous alternative explanation can be given 
for the non-robust linking up case in fig. 4(b), in which the positive dependence due to 
X →+ Z →+ Y and the negative dependence due to X →– Y cancel out.

� �� ����������
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Fig. 4.  Unfaithfulness due to cancelling paths: (a) explains non-robust screening 
off (DEP(X,Y) and INDEP(X,Y|Z)); (b) explains non-robust linking 
up (INDEP(X,Y) and DEP(X,Y|Z)).
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In our view, the major advantage of the proposed justification lies in the fact that it neither 
presupposes advanced concepts of physics nor strong metaphysical assumptions. It rather 
justifies causality on the basis of ordinary phenomena in everyday life. In particular, we ex-
perience screening off and linking up in all kinds of purposeful actions. Here our actions 
(A) realize certain means (M) in order to produce certain purposes (P) (A → M → P); so 
DEP(A,P) holds, but M screens off A from P, i.e. our actions cannot reach their purposes 
without realizing certain means. Moreover, if a purpose P can be achieved by two independ-
ent means M1 and M2 (e.g. shooting an animal by two independent guns), then the achieve-
ment of the purpose P links up M1 and M2 (if gun M1 missed the target, M2 must have hit 
it successfully). These facts help to explain (i) why causality is an inborn reasoning mecha-
nism of homo sapiens and (ii) why causality is so closely connected with interventions.

Let us finally compare our IBE justification strategy with the fork asymmetry argu-
ment, which goes back to Reichenbach (1956, 159-61) and has been elaborated by Pap-
ineau (1992). It runs as follows: Assume X and Y are two events, both correlated with a 
third event Z. Then either (a) X and Y are mutually correlated and Z screens them off, in 
which case Z is a common cause of X and Y; or (b) X and Y are uncorrelated, in which case 
Z is a common effect of X and Y. However, this justification strategy has gaps. As Papineau 
(1992, 240) observes, the argument doesn’t work if X and Y can causally reach each other; 
Reichenbach excluded this case by assuming that X and Y are temporally simultaneous. An-
other gap is the third possible case (c) in which X and Y are correlated but Z doesn’t screen 
them off, because X, Y, and Z are joint effects of a common cause C. In contrast, our pro-
posed justification strategy doesn’t suffer from these restrictions. It is not based on the fork 
asymmetry, but on the asymmetry between screening off and linking up, which is not con-
sidered by Reichenbach or Papineau.

2.4. Justification of causality in deterministic universes
We finally discuss the question of determinism. Our justification of directed causality pre-
supposes that the probabilistic relations of screening off and linking up relations are asym-
metric. Thus, in the screening off example (2) we assumed that Z screens off X and Y, but 
neither does X screen off Z from Y, nor does Y screen off Z from X. We made a similar as-
sumption for the linking up relation in example (3). However, this assumption is only sat-
isfied if the given causal model is indeterministic, that is, if the involved probabilities are dif-
ferent from 0 or 1.

We say that a sequence of variables U determines another variable Y if for every U-value 
u there exists one (and hence only one) Y-value y such that P(y|u) = 1. (Note: U can also 
be a single variable.) This definition covers not only the case in which an effect depends 
deterministically on its cause(s), but also the case in which a cause depends deterministi-
cally on its effect(s), or in which two effects depend deterministically on each other. In 
our example (2), if X determines Z, then it is impossible to vary Z’s value when X’s value is 
fixed, whence P(y|z,x) = P(y|x) = 1 or = 0 will hold for every X-value x. So INDEP(Z,Y|X) 
would hold, i.e. X would screen of Y from Z. Let us say that U screens off Y from Z trivi-
ally iff neither Y nor Z can varied when U is fixed: This implies that P(y|z,u) is either un-
defined (iff P(z|u) = 0) or P(y|z,u) = P(y|u) (iff P(z|u) = 1). In conclusion, if example (2) 
represents a situation of deterministic causality, then we get the result that X screens off Y 
from Z trivially.
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The situation is illustrated in fig. 5. In the case of a merely one-sided determinism, 
where the cause determines its effect but not vice versa, the situation is still not symmetric, 
since Z’s value is not determined by X and, thus, Z is a non-trivial off-screener of X from Y 
(see fig. 5(a)). So we can still identify the intermediate node Z by purely empirical (statisti-
cal) relations, and the explanation of these statistical relations by an intermediate or com-
mon cause structure is warranted. According to a full-blown deterministic world view, 
however, one assumes a two-sided determinism, in which not only the cause determines 
its effects, but the cause can also uniquely be recovered from its effects, or in other words, 
the cause is determined by its effects. Under this assumption (see fig. 5(b)) the empirical 
screening off relations are fully symmetric and the suggested justification of causality by an 
inference to the best explanation (IBE) breaks down completely. In fig. 5, “→1 ” abbreviates 
“P(effect|cause) = 1” and “→1:1 ” abbreviates “P(effect|cause) = P(cause|effect) = 1”.
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Fig. 5.  Deterministic screening off. (a) One-sided determinism: X is a trivial off-screener, but 
Z is a non-trivial off-screener. (b) Two-sided determinism: X, Y and Z are trivial off-
screeners; so the situation is completely symmetric. (The situation is exactly alike if 
Z is not an intermediate but a common cause of X and Y.)

Does this mean that our IBE-justification of directed causality doesn’t apply to a fully de-
terministic world? The answer is: No –at least not in the circumstances that are typical for 
our world. It is indeed true that our IBE couldn’t work if the considered structures were 
deterministically complete, in the sense that they would contain all variables which are 
needed to fully determine their value. However, the physical systems in our world are typi-
cally influenced by a multitude of minor ‘disturbance’ or noise factors, while the complete 
set of causes is usually unknown. In other words, even if our world is truly deterministic, 
our causal models are typically incomplete and hence indeterministic – a situation which 
is called pseudo-indeterminism (SGS, §2.5). A situation of this kind is illustrated in fig. 6: 
the part of the deterministic world which is encircled by the dashed line represents what we 
know about it; the variables Di represent unknown disturbance or noise variables. Given 
that the noise variables are mutually independent and Di is independent from Xi–1 (what is 
usually assumed), all of our observations apply equally to pseudo-indeterministic structures 
of this sort: thus Xi screens off Xi–1 from Xi+1 but Xi–1, doesn’t screen off Xi from Xi+1, etc.
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Fig. 6.  Screening off in a pseudo-indeterministic substructure (encircled by the dashed line) 
which is part of a deterministic world; the variables Di represent the unknown 
remainder causes of Xi. Because of P(Xi | Xi–1) < 1, Xi screens off Xi–1 from Xi+1 
non-trivially.



84 Gerhard Schurz

Theoria 30/1 (2015): 73-95

One might object that our assumption that the noise variables Di are independent is a 
“trick”, because in a truly deterministic universe they are themselves determined and hence 
mutually dependent and dependent on the Xi–1. But the last part of this argument is wrong: 
Surely, the Di are themselves determined in a deterministic universe, but all that one needs 
in order to allow for independent variations of the Di and the Xi are enough independent 
initial causes at the start of the universe. In fig. 6, we need at least one starting cause X0 for 
the Xi-chain and for each variable Di one independent starting cause Di,0, to produce these 
independencies at least approximately. To be sure, all these “initial causes” can be summa-
rized by a one multi-dimensional initial state variable U0 representing the universe at its 
beginning. What is important here is that sufficiently many different values of this initial 
state variable were realized in different parts (individuals or subsystems) at the beginning of 
the universe. This means, in other words, that the entropy of the universe at its beginning 
must have been sufficiently low. This observation brings our account, if applied to deter-
ministic universes, in a close relationship to those accounts of deterministic causality that 
base causality on the continuous increase of entropy (cf. Frisch 2007).

3. Structure and content of the theory of causality TC

3.1. Core axioms of TC: d-connection (Markov) and productivity (minimality)

In this subsection we present the exact explication of the axioms of causal “d-” connection 
(C) and productivity (P) that have been justified by an IBE in sec. 2. (C) and (P) consti-
tute TC’s core and are traditionally expressed by the equivalent causal Markov condition 
(M) and the minimality condition (Min), respectively (SGS, §3.4.1-2). We prefer (C) and 
(P) over (M) and (Min), because (C) and (P) are philosophically more transparent and bet-
ter suited for expressing TC’s full content. Before we explicitly state (C) and (P), we have 
to introduce the following notions. A causal graph (or structure) is a pair (V,E), where V is 
a set of variables (the “vertices”), and E ∈ V × V is a set of directed arrows Xi → Xj (i.e. or-
dered pairs, the “edges”). A graph (V,E) together with a probability-distribution P over V 
is called a causal model (or system) (V,E,P). Causal structures and systems are parts of the 
world, while causal graphs (CGs) and models (CMs) are conceptual representations of 
causal structures and systems, respectively. Some further important notions:

X → Y: X is a direct cause of Y (Y is a direct effect of X).
X → → Y: X is a (direct or indirect) cause of Y (Y is an effect of X), i.e. there is a di-
rected path X → Z1 → ... → Zn → Y from X to Y (for n ≥ 0).
X – Y: X → Y or X ← Y, i.e. X and Y are adjacent.
X1 – – Xn: a path X1 – ... – Xn between X1 and Xn that connects X1 and Xn; the variables 
Xi (1 ≤ i ≤ n) are said to lie on this path.
If Xi lies on a path π, then Xi is called (i) a common cause, (ii) an intermediate cause, or 
(iii) a common effect on π iff (i) ←X →, (ii) ←X← or →X→, or (iii) →X←, respec-
tively, is part of π.

A CG (or CM) is called acyclic iff it contains no cyclic paths X → → X. In this pa-
per we concentrate on acyclic CMs, although the theory TC is not necessarily restricted to 
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them: it can also be applied to cyclic graphs, though some famous results (e.g. theorem 1 be-
low) do not hold in this case (cf. Schurz 2013, 397f).

The principle of causal connection or “d-connection” says that every (conditional) 
probabilistic dependence between two variables X and Y is the result of some causal path 
connecting them. The correct formulation of this principle has to account for all possible 
combinations of screening off and linking up along all paths connecting X and Y. If a path 
π connects X and Y in a CG (V,E), then π can generate probabilistic dependence condi-
tional on a (possibly empty) subset of variables U ⊆ V – {X,Y} only if no common or in-
termediate cause on π is in U and all common effects on π are in U, or have an effect in 
U. The disjunctive clause “or have an effect in U” is needed because two independent vari-
ables X and Y may not only be linked up by common effects, but also by effects of common 
effects, as for example by the variable Z' in the frame consisting of X → Z → Y and Z → Z'.

If X and Y are connected in a graph (V,E) by several paths, then X and Y become de-
pendent iff at least one of these paths generates a probabilistic dependence. These consider-
ations are summarized in the following axiom of causal connection (C):

(4) Axiom of causal connection (C): Every physically possible CM (V,E,P) [in an in-
tended domain] satisfies the condition of causal connection (C), which is defined as 
follows:

 For all X,Y ∈ V and U ⊆ V–{X,Y}: If DEP(X,Y|U), then X and Y are d-connected 
given U in the following sense:

 X and Y are connected by some path π such that no intermediate or common cause 
on π is in U, while every common effect on π is in U or has an effect in U. (In this 
case we say that X and Y are d-connected given U by path π.)

Condition (C) entails the following well-known principle:

(5) Unconditional dependence: If DEP(X,Y), then X and Y are connected by a directed 
or common cause path (i.e., are d-connected given ∅).

If X and Y are not d-connected given U, X and Y are said to be d-separated by U. The con-
cepts of d-separation and d-connection were developed by Pearl (1988, 117). (C) asserts an 
implication from a (probabilistic) dependence to a d-connection – or, in contraposed form, 
an implication from a d-separation to an independence, which is the formulation used by 
Pearl (1988, 119; 2000, th. 1.2.4). If X and Y are connected by a path π but not d-con-
nected by π given U, then U is said to block path π.

Condition (C) is equivalent with the famous causal Markov condition (cf. Pearl 2009, 
16; SGS 29f):

(6) Definition of the causal Markov condition (M):
 (V,E,P) satisfies (M) iff every X ∈ V is independent of its non-effects conditional 

on the set of its direct causes or “parents” par(X), i.e., INDEP(X,U|par(X)) holds 
for every subset U ⊆ V of non-effects of X.

(7) Theorem 1: For every acyclic CM: (C) and (M) are equivalent.

SGS (sec. 3.4.1-2) prefer (M) as the core axiom of TC. The equivalence between (M) and 
(C) has been demonstrated by Verma and Pearl (s. Pearl 1988, 119f, th. 9, cor. 4), and by 
Lauritzen et al. (1990, 50), who call (C) the global and (M) the local Markov condition (see 
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also SGS 46, th. 3.3). Observe that in its contraposed form, (C) asserts a (conditional) in-
dependence for all d-separation relations of a causal graph, while (M) asserts such an in-
dependence only for the d-separation relations between a variable X and its non-effects 
conditional on its parents; the other independencies follow from these as probabilistic con-
sequences. For this reason, (C) expresses the full content of the causal Markov condition in 
a much more direct way than (M).

In (4) we distinguished between the definition of the d-connection condition and 
the corresponding axiom which states that this condition holds for all physically possible 
causal models [in an intended domain]. SGS (29) speak likewise of “axioms”, but present 
them as definitions; Pearl (2009) only states the definitions. The formulation as axioms 
impels us to critically reflect upon the problem of generality: do all correlations between 
analytically independent variables really result from causal connections? The justifica-
tion of causality by an IBE in sec. 2 works only for correlations that participate in rela-
tions of screening off or linking up. We argued in sec. 2 that all correlations that can be 
utilized by means of interventions participate in screening off and/or linking up rela-
tions. However, not all correlated variables can be intervened on. Possible failures of the 
causal Markov condition have been discussed in the context of EPR-correlations in quan-
tum mechanics, in which the correlated states of two entangled particles are not screened 
off by common causes (cf. Hausman 1998, 252; Healey 2009). Cartwright (2007, 122) 
argues that similar problems may even arise in ordinary (macroscopic) domains. Well-
taken defences against these objections have been given by the proponents of TC (SGS 
59-63; Pearl 2009, 62, Hitchcock 2010), though not all problems are solved by these de-
fences and the debate is ongoing. In this paper we don’t take a stance on whether (C) 
is strictly general or holds only in certain domains. To account for the latter possibility 
we inserted “[in an intended domain]” in axiom (C). In any case, we understand (C) as 
a synthetic (i.e. not analytically true) principle whose content can be true or false in the 
realistic sense, and we believe that (C) holds for most physically closed systems. Moreo-
ver, (C) provably holds for every subsystem of a (C)-satisfying causal system (V,E,P) that 
is causally sufficient, i.e., that doesn’t omit any true and non-degenerate common cause of 
variables in V (cf. SGS, 22).

Axiom (C) asserts that a probabilistic dependence implies a causal connection. The 
second core axiom, (P), asserts that the other direction, from causal connection to probabi-
listic dependence, holds under special conditions: a direct causal connection implies ceteris 
absentibus a probabilistic dependence. (P) holds only under certain conditions because un-
faithful structures due to cancelling paths (fig. 4, sec. 2.3) cannot be excluded a priori. We 
can isolate X’s causal influence on Y from the influence of possibly cancelling paths in un-
faithful causal models by conditionalization on all of Y’s parents that are different from X 
(par(Y) – {X}). So the axiom of productivity is explicated as follows:

(8) Axiom of productivity (P): Every physically possible CM [in an intended domain] 
satisfies the condition of productivity (P), which is defined as follows:

 For all X, Y in the CM: If X → Y, then DEP(X,Y|par(Y)–{X}) holds.
For a closer investigation of the condition of productivity see Schurz/Gebharter (2015, 
sec. 2.3). In distinction to the first core axiom, (P) is justified by a methodological require-
ment: in order to be empirically significant, causal arrows must be responsible for at least 
some (conditional) probabilistic dependence; causal arrows without empirical effects are 
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eliminated by Ockham’s razor. Given (C), (P) is equivalent with the well-known minimal-
ity condition (Min) (SGS 31):

 (9) Definition: A (C)-satisfying CM (V,E,P) is minimal (i.e. satisfies (Min)) iff no ar-
row can be omitted from E without violating condition (C), i.e. every submodel 
(V,E’,P) with E’ ⊂ E violates (C).

(10) Theorem 2: For all (C)-satisfying and acyclic CMs, (Min) and (P) are equivalent.
Axiom (P) is new; a proof of theorem 2 is found in Schurz/Gebharter (2015, th. 2). The 
advantage of (P) over (Min) is twofold: First, (Min) tells us only that every arrow X → Y is 
needed to explain some dependence within the given CM, while (P) states this dependence 
explicitly. Second, (P) is independent of (C), while (Min) presupposes (C).

Based on the precise explications of TC's axioms, we are able to prove that the explana-
tions of screening off and linking up given in sec. 2.2 and 2.3 are indeed entailed by (C) and 
(P), as follows:

(11) Assume a CM of the form (a) X → Z → Y or X ← Z → Y, or of the form 
(b) X → Z ← Y, which satisfies conditions (C) and (P). Then:

(11.1) (C) entails INDEP(X,Y|Z) in case (a), and INDEP(X,Y) in case (b).
(11.2) Condition (DT) (∃x,y: Σz ∈ Val(Z)P(y|z) × P(z|x) ≠ Σz ∈ Val(Z)P(y|z) × P(z)) entails 

DEP(X,Y) in case (a), and condition (DO) (∃x,y,z:DEP(x,z) ∧ DEP(z,y)) entails 
DEP(X,Y|Z) in case (b).

Proof of (11): (11.1) is obvious.
For (11.2): Case (a): By probability theory we have (a) P(y|x) = ΣzP(y|x,z) × P(z|x) and 

(b) P(y) = ΣzP(y|z) × P(z). The sum in (a) equals (c) ΣzP(y|z) × P(z|x) by condition (C) of 
sec. 2.3, since Y is not d-connected with X given Z. It follows that P(y|x) ≠ P(y) holds ex-
actly if the two sums in (c) and (b) are unequal, i.e., if (DT) holds.

Case (b): By probability theory, (a) P(x|y) = P(x|y,z) × P(z|y) + P(x|y, ¬z) × P(¬z|y) 
and (b) P(x) = P(x|z) × P(z) + P(x| ¬z) × P(¬z). By INDEP(X,Y) we have P(y|x) = P(y). 
So the sums in (a) and (b) must be equal. These sums are weighted averages, with the 
weights in the sum in (a) being P(z|y) and P(¬z|y), and the weights in the sum in (b) be-
ing P(z) and P(¬z). By (DO) we have (i) P(z|y) ≠ P(z) and (ii) P(x|z) ≠ P(x| ¬z). It follows 
from (i), (ii), and the laws of weighted averages that the two sums in (a) and (b) would have 
to be different if INDEP(x,y|Z), i.e. P(x|y,z) = P(x|z) and P(x|y, ¬z) = P(x| ¬z), would 
hold. Thus either P(x|y,z) ≠ P(x|z) or P(x|y, ¬z) ≠ P(x| ¬z) must hold, which gives us 
DEP(X,Y|Z). Q.E.D.

3.2. The empirical content of TC
In this section 2 we showed that TC’s core axioms offer the best (if not the only) avail-

able explanations of screening off and linking up. These explanations are highly unifying: In 
terms of the account of Schurz/Lambert (1994), a large number of statistical (in)dependence 
relations is reduced to a much smaller number of directed causal arrows plus a few general 
principles. Since the general axioms of TC are the same in all applications, their weight 
vanishes according to Schurz/Lambert’s unification account. In the screening off exam-
ple with three variables, six (in)dependence relations DEP(X,Z), DEP(X,Z|Y), DEP(Z,Y), 
DEP(Z,Y|X), DEP(X,Y), INDEP(X,Y|Z) are reduced to two causal arrows X → Z and 
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Z → Y. More generally speaking, in a Bayes net with n variables, there are n × (n – 1)/2 
pairs of variables that can be conditionalized to at most 2(n–2) subsets of variables; thus 
n × (n – 1) × 2(n–3) conditional (in)dependences are reduced to n × (n – 1)/2 causal con-
nections, which is a reduction by a factor of 2(n–2).

However, in order to be empirically significant, this is not enough. Causal explanations 
should not be entirely post facto, but should be able to generate empirical content by means 
of which TC is independently testable. To make this notion precise, we define it as follows: 
An empirical model is a pair (V,P) of a set of empirically measurable variables V together 
with a probability distribution P over V. An empirical model (V,P) is called an empirical 
submodel of a CM (V’,E’,P’) iff V ⊆ V' and P = P' ↑  V (the restriction of P' to V).5 We also 
say that (V’,E’,P’) expands (V,P). We define:

(12) Empirical content of TC: A version of TC has empirical content iff there exists 
a logically possible empirical model that cannot be expanded to a CM satisfying 
this version of TC.

If TC would not have empirical content, the content of all particular causal models would 
be entirely ex-post. For any empirical model (V,P) one could then invent a “causal explana-
tion” in accordance with TC, i.e., a TC-model (V’,E’,P’) that expands (V,P). If this were 
the case, TC would be exposed to the objection of being superfluous “causal metaphysics”.

In investigating TC’s empirical content we follow the analogy between causality 
in TC and force in classical physics mentioned in sec. 1. As the total force law (sum of 
forces = mass × acceleration) and the actio-equals-reactio law constitute the core of classi-
cal physics, (C) and (P) constitute the core of TC. But there are further general principles, 
such as faithfulness (F), external noise (EN), temporal forward-directedness (T), locality 
(L) and probabilistic freedom of interventions (Fr), which are introduced in sections 3.3. 
These principles constitute extended versions of TC, just like the laws of gravitational or 
frictional force constitute extended versions of Newtonian physics.

According to our knowledge, the first investigation of the question of TC’s empiri-
cal content by logical means is undertaken in Schurz/Gebharter (2015). Their first re-
sult, stated in theorem 3, is negative: (C)+(P) alone don’t have empirical content, not even 
when the condition of acyclicity is added:

(13) Theorem 3: Every analytically possible empirical model (V,P) can be expanded to an 
acyclic CM (V’,E’,P’) satisfying (C) and (P). (Proof in Schurz/Gebharter 2015, th. 3.)

Technically, theorem 3 is unspectacular. Its philosophical consequences, however, deserve 
critical reflection. Proponents of TC have often argued that (C) or the equivalent causal 
Markov condition (M) is satisfied by all (or most of all) known empirical and/or technical 
systems (SGS 29; Pearl 2009, 62f; Hitchcock 2010, sec. 3.3). However, since TC’s core axi-
oms are empirically empty, it is impossible to confirm (C) without additional assumptions. 
However, no such additional assumptions are stated in the quoted passages. The same 
problem applies to critics of (C), such as Cartwright (2007, 122): to turn their examples 
into counterexamples to (C), they must make further assumptions about causality.

5 Empirical submodels correspond to what is called “partial (potential) models” in structuralist philoso-
phy of science (cf. Balzer et al. 1987; Sneed 1971, ch. 3).
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Is it a problem that TC’s core is empirically empty? Not necessarily. Sneed (1971, 
126) has demonstrated with scrutiny that the core of classical physics, the total force law, 
is also empirically empty. For every system of (point) masses with given accelerations one 
can construct force functions that satisfy the total force law. However, it is well-known 
that the empirical content of general classical physics abruptly increases when special force 
laws (e.g. the law of gravitational force) are added (cf. Schurz 2013, ch. 5). Do we meet a 
similar situation in the case of TC? The answer to this question given in Schurz/Gebhar-
ter is “yo”: Empirical content can indeed be added, but not as easily and as much as in the 
case of physics.

The axioms (C) and (P) are purely structural insofar as they do not make any assump-
tions about the “substance” or physical nature of the cause-effect relation. There is a further 
purely structural principle of causality, which is a strengthening of (P) and the exact inverse 
of (C), namely the condition of faithfulness, which is defined as follows (cf. SGS 31, Zhang 
and Spirtes 2008, 24):

(14) Definition of the faithfulness condition (F): (V,E,P) satisfies (F) iff (V,E,P) satis-
fies the converse of (C): if X and Y are d-connected given U ⊆ V–{X,Y}, then 
DEP(X,Y|U).

In other words, a CM is faithful iff P verifies only those probabilistic independence rela-
tions that are implied by (C). It is easily seen that:

(15) Faithfulness implies productivity.

However, faithfulness is logically stronger than productivity. Contrary to (P), (F) has vari-
ous exceptions. The most important kind of an unfaithful causal model has been explained 
in sec. 2.3: here the probabilistic effects of several causal paths that d-connect two variables 
X and Y cancel each other out, so that INDEP(X,Y) results although X and Y are d-con-
nected.

It is easy to see that axiom (C) plus condition (F) have empirical content. A result of 
this kind can be found in Zhang and Spirtes (2008, 253), though not in terms of content, 
but in terms of “detectable kinds of unfaithfulness”. As explained in Schurz/Gebharter 
(2015, sec. 3.2), Zhang and Spirtes’ theorems imply the following results for the empirical 
content of (C)+(F):

(16) Theorem 4: (C)+(F) have empirical content: No empirical model (V,P) with 
{X,Y,Z} ⊆ V verifying the logically possible (in)dependence relations in (a) or (b) 
can be expanded to a CM (V',E',P') satisfying (C) + (F):

 (a)  ∀U ⊆ (V–{X,Y}): DEP(X,Y|U) ∧ DEP(Y,Z|U), and there exist two distinct 
sets W,W' ⊆ V–{X,Z} with Y ∈ W and Y ∉ W', both of which screen off X 
from Z

 (b)  INDEP(X,Y), INDEP(Y,Z), INDEP(X,Z), DEP(X,Y|Z), DEP(Y,Z|X), 
DEP(X,Z|Y).

Since unfaithful causal systems exist, (F) would be empirically false if it were for-
mulated as a strictly general axiom. Proponents of TC argue that (F) is highly proba-
ble, i.e. satisfied by almost all empirical models. These arguments are based on the fact 
that unfaithful CMs are parameter instable in the following sense: their unfaithful inde-
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pendencies can be destroyed by arbitrary small changes of the probability distributions 
P(X|par(X)) of the variables X conditional on the set of their parents. These probability 
distributions are called the causal model’s parameters. The parameters of acyclic models 
can be varied independently from each other without destroying the independencies en-
tailed by (C).

(17) Lemma 1: A (C)-satisfying acyclic CM (V,E,P) is faithful iff it is parameter-stable 
(cf. Pearl 2009, 48, def. 2.4.1)

Lemma 1 implies that for every probability measure over the set of parameters of a CM 
which is “smooth” (i.e. absolutely continuous with the Lebesgue measure over [0,1]p), the 
probability of unfaithfulness is zero (cf. SGS 41f; Steel 2006, 313). This means more con-
cretely that in every physical causal system whose causal parameters are underlying small 
variations by external disturbations, the faithfulness condition will hold with near cer-
tainty. In conclusion, the faithfulness condition has not strict-deductive but merely proba-
bilistic-inductive content.

A further possibility of strengthening TC is the condition of temporal forward-direct-
edness (T). To make this condition precise, we define a causal event-model (V,E,P,t) as a 
CM whose variables are event-variables, together with a time function t: V → Reals, where 
t(X) is the time point at which the possible X-values (events) x occur.

(18) Axiom of temporal forward-directedness (T): Every physically possible causal event 
model (V,E,P,t) [in an intended domain] satisfies condition (T), which is defined 
as follows: X → Y implies t(X) < t(Y).

This condition is no longer purely “structural” but implies something about the “physical 
nature” of the cause-effect relation. Among other things, Schurz/Gebharter (2015, sec. 3.3) 
prove the following result:

(19) Theorem 5 (Impossibility of screening off by future events): (C)+(F)+(T) entail 
that empirical event-models (V,P,t) featuring the (in)dependencies DEP(X,Z) 
and INDEP(X,Z|Y) with t(Y) > t(X), t(Z) are impossible.

A still stronger extension of TC (not mentioned in Schurz/Gebharter 2015) is possible by 
adding the condition of locality, which asserts that in an event model no causal influence is 
propagated with a speed greater than the velocity of light c. To express this condition for-

Fig. 7.  Two-dimensional Minkowski diagram. 
X but not Y or Z are in the past lightcone of E.
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mally, we define a spatial causal event model as a quintuple (V,E,P,t,s) such that (V,E,P,t) is 
an event model and s:V → |R3 a position function assigning to each variable its position in 
(Euclidean) space (|R3).

(20) Definition of the condition of locality (L): A spatial causal event model satisfies 
condition (L) iff X → Y implies 0 < |s(X)–s(Y)| / t(Y)–t(X) ≤ c.

(L) implies (T), since |s(X)–s(Y)| / t(Y)–t(X) is negative if t(Y) < t(X) and zero if t(Y) = 
t(X). (L) entails that if an event X is not in the past lightcone of another event Y, X cannot 
causally influence Y; this is illustrated in fig. 7. Hence, from condition (L) the following 
counterpart of theorem 5 can be derived:

(21) Theorem 6 (Impossibility of screening off by events outside the light cone): 
(C)+(F)+(L) entail that empirical event-models (V,P,t) featuring the (in)depend-
encies DEP(X,Z), and INDEP(X,Z|Y) with (|s(X)–s(Y)|/t(X)–t(Y)) ∉ (0,c] and 
(|s(Z)–s(Y)| / t(Z)–t(X)) ∉ (0,c] are impossible.

A final strengthening of TC (that is also not treated in Schurz/Gebharter 2015) is possi-
ble by adding intervention conditions. An intervention on a variable X can be described as a 
value-instantiation of a so-called “intervention variable” IX that causes X to take a specific 
value x. Usually (but not necessarily) it is assumed that intervention variables are under hu-
man control. We propose the following simple definition:

(22) Definition: IX is an intervention variable for X in a CM (V,E,P) (with IX,X,Y ∈ V) 
iff the following intervention condition (IX) is satisfied: (i) IX → X is the only 
causal arrow connecting IX with other variables in V, and (ii) X deterministically 
depends on all IX-values ix except on IX’s value “off”.

This definition of an intervention variable comes close to the notion of “policy variables” 
in SGS (50).

All interventionist accounts (cf. Haussman 1998, Woodward 2003) take the following 
three features of interventions as the “key” to causality:

(23) Three key features of interventions:
 (a) We can bring about the effect by producing its cause:
  DEP(Y,IX) holds in IX → X → Y.
 (b) We cannot bring about the cause by producing its effect:
  INDEP(X,IY) holds in X → Y←IY.
 (c)  We cannot bring about the effect of a common cause by producing a corre-

lated effect: INDEP(X,IY) holds in X←C → Y←IY.

These three features have a straightforward explanation by TC’s core axioms: (a) holds be-
cause of condition (22)(ii): IX being on (i.e. IX ≠ off) sets X to some value x, and because of 
X → Y and axiom (P), this must change Y’s probability distribution. (b) and (c) hold be-
cause probabilistic dependencies are not propagated over common effects by axiom (C). 
Theorem 7 proves (by means of these three key effects) that the addition of intervention 
conditions adds empirical content to (C), even without the faithfulness assumption, under 
the mild additional assumption that an X-Y cycle is excluded:
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(24) Theorem 7: Assume a CM (V,E,P) that satisfies (C) and contains two probabil-
istically dependent empirical variables X and Y together with intervention vari-
ables IX and IY satisfying the intervention conditions (IX)(i) and (IY)(i). Then: If 
E does not contain an X-Y cycle, then DEP(IX,Y) and DEP(IY,X) cannot both 
hold.

Proof of theorem 7: From DEP(X,Y) together with (C), (IX)(i), (IY)(i) and the exclusion 
of X-Y cycles it follows that the causal structure must be IX → X---Y←IY, with ‘---’ for ‘di-
rected or common cause path’.

Assume DEP(IX,Y). So by (C), some path IX→X---Y d-connects IX and Y. Then 
X---Y can neither be X←←Y nor X←←C → → Y. For assume otherwise: Then X would 
be a common effect of IX and Y (or of IX and C), and thus the path IX → X---Y would be 
blocked. Therefore, X → → Y must hold. From this it follows that the path X → → Y←IY 
is blocked by Y. By the assumed acyclicity, this path is the only (type of) path connecting X 
with IY, from which it follows by condition (C) that INDEP(IY,X) must hold.

Thus, DEP(IX,Y) implies INDEP(IY,X). In the same way it can be proved that 
DEP(IY,X) implies INDEP(IX,Y). So DEP(IX,Y) and DEP(IY,X) cannot both be true. 
Q.E.D.

Theorem 7 holds even without the intervention condition (22)(ii). If we drop this 
condition, we get what has been called a weak or “parametric” intervention variable (cf. 
Eberhardt and Scheines 2007, 986).

Intervention conditions are not general conditions, but assumptions about particular 
causal models. So they do not belong to the general theory of causality. However, interven-
tion assumptions are usually justified by the following general assumption about the “rela-
tive” freedom of human actions:

(25) Probabilistic freedom of interventions (Fr): Most of the (possible) actions I of a 
person that manipulate the variables of a person-external causal system (V,E,P) 
are not probabilistically dependent on those variables in V that are not effects 
of I.

(C)+(Fr) make the truth of intervention conditions and therefore also the empirical conse-
quences of theorem 7 highly probable, without making any ad-hoc assumptions. Thus the 
theory TC enriched with condition (Fr) achieves additional empirical content. The jus-
tification of intervention conditions by (Fr) makes clear why the practical meaning of in-
terventions as controllable by human actions is so important: This is so because usually we 
know that our actions are free in regard to V. Of course, freedom in some non-relativistic 
sense is a matter of deep philosophical debate, but the notion of freedom expressed within 
(Fr) is a very weak one: It only requires that our actions are not the effects of any causes 
in V.

4. Conclusion: A Happy Marriage between Causality and Unification

We have argued that the two paradigms of scientific explanation, causality and unifica-
tion, are not in opposition, but are mutually supporting. The arguments in section 2 and 3 
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have shown that causal explanations are preferable to non-causal explanations because the 
general theory of causality, TC, offers a higher-level unification of those regularities that 
are used as general premises in the explanations of single events. The unificatory gain pro-
vided by TC constitutes an important amendment to the account of unification developed 
in Schurz/Lambert (1994). In this account Schurz/Lambert (ibid., 74f) assume a “primi-
tive” preference for causal as opposed to non-causal explanations, because they don’t find 
a justification of this preference in terms of unification (the same holds is true for the ac-
counts that are discussed in Schurz 1999, 2014 and Gijsbers 2007). This paper offers such 
a justification and, thus, supplies an important complement of the account of Schurz/Lam-
bert (1994).

The demand of unification calls for an important clarification, namely: the demand 
applies only ceteris paribus. Out of two explanations of the same event E with true premises 
and comparable simplicity, the one with greater unification power is to be preferred. But of 
course, a true and less unificatory explanation is always preferable to a false although highly 
unificatory explanation.

Therefore, the cooperation between causality and unification does not exclude the pos-
sibility that the true causal explanation is not more but less unifying than a competing, 
highly unifying but false explanation. This helps to clarify a misunderstanding that may un-
derlie an argument of Barnes against unification (1995, 265). He argued that it may well 
happen that three (kinds of) events Ei (i=1,2,3) are caused by three independent causes Ci 
(i = 1,2,3). Although the corresponding independent explanations do not produce unifica-
tion, they are preferable to the attempt of explaining all three events in terms of one com-
mon cause C, because after all, they are the true explanations. What Barnes’ example shows 
is that because not all events have a common cause, the request for “maximally unifying” 
(true) explanations cannot always be satisfied. Nevertheless, the theory of causality TC of-
fers the following unifying explanation of this and all similar explanation situations at the 
higher level of explaining probabilistic regularities, as follows: Either (1.) the three (kinds 
of) events are probabilistically independent, in which case TC predicts and explains why 
they cannot have a common cause, or (2.) they are probabilistically dependent, in which 
case TC predicts and explains why they must be either related to each other in the form of 
a causal chain, or why they must be effects of a common cause. In case (2.) an explanation 
of the three events Ei by three distinct ‘proximate’ causes Ci (even if it is true) is clearly infe-
rior, because it cannot explain the correlations between the Ci, which must obtain if the ex-
planations are true. However, even in case (1.), TC achieves a unification surplus compared 
to a non-causal explanation. In conclusion, true causal explanations are more unified than 
true non-causal explanations, even if the causal structure of our world is not maximally uni-
fied.
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