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Introduction

Paul Ernest defines the absolutist philosophies of mathematics as those for which math-
ematics is an “objective, absolute, certain and incorrigible body of knowledge, which 
rests on the firm foundations of deductive logic” (Ernest 2008, 2). These philoso-
phies are often associated with an over-valuation of mathematics. Since mathematics is 
viewed as objective, absolute and a-priori, mathematical knowledge or knowledge sup-
ported by mathematics are allegedly more sound than other forms of knowledge. Such 
knowledge should be encouraged and promoted, even if only a handful of people under-
stand it properly.

This point of view is reflected in a recent experiment: scholars were asked to evalu-
ate social sciences abstracts, some of which had a sentence added to them that included a 
meaningless string of symbols resembling a mathematical statement. It turns out that eval-
uators lacking strong mathematical education tended to evaluate the abstracts with junk 
mathematics more positively (Erikson 2012).

Curiously, the absolutist view is sometimes also associated with an under-valuation of 
mathematics. According to this interpretation, mathematics is absolute and infallible be-
cause it is mechanical, inhuman and irrelevant to our dynamic and uncertain lives. The 
people who do mathematics are therefore strange machine-people (“nerds”), who are hard 
to communicate with.

Of course, as noted by Ernest, an absolutist view can be associated with positive 
approaches to mathematics, which are not restricted to the overvaluation mentioned 
above, by dissociating the absolute image of mathematical facts from a humanistic proc-
ess of mathematical learning and discovery. But the view of mathematics as a process of 
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human discovery is more often related to fallibilist philosophies of mathematics, which 
view it as “the outcome of social processes. Mathematical knowledge is understood to 
be fallible and eternally open to revision, both in terms of its proofs and its concepts” 
(Ernest 2008, 3).

Since I consider the absolutist view and its related over- and under-valuations as po-
tentially dangerous to a fruitful engagement of the general public, intellectuals and de-
cision makers with mathematics, I find it important to look for support for approaches 
that may promote fallibilism. Traditionally, cognitive science tended to be formal, ab-
stract and computational, and therefore not much of an ally to fallibilists. But more re-
cently, cognitive science has grown more “embodied” —that is, starting its analysis from 
the position of an embodied mind operating in a concrete practical-ecological niche. 
This view allows mathematics to evolve fallibly together with changes in our embodi-
ment, society and environment, and, given the popularity of cognitive science, may help 
change the public image of mathematics (even if not the views of those committed to an 
absolutist first philosophy).

The purpose of this paper is, therefore, to briefly present two of the many embodied 
accounts of mathematical cognition, and consider the images of mathematics that they 
promote. While no existing cognitive theory of mathematics has, as far as I can evaluate, 
a sound empirical support, and while all are subject to very substantial critiques (that’s 
why I’m referring to these accounts below as “stories” rather than “theories”), cognitive 
theories are readily popularized and quickly become culturally influential, regardless of 
their scientific evidence. Exploring the repercussions of cognitive theories on the image 
of mathematics will thus help us understand the cultural role that such theories can play 
in promoting fallibilist approaches to mathematics, and confronting its over- or under-
valuation.

Two Stories about mathematical cognition

I will present here two stories about mathematical cognition. The first story derives from 
the theory of cognitive mathematical metaphors, associated with Lakoff and Núñez 
(2000), which was later enhanced by a neuro-cognitive account (Lakoff 2008). I will refer 
to this below as the modular story. The second story is derived from Walter J. Freeman III’s 
general theory of cognition (Freeman 2000), whose application to mathematical cognition 
was only hinted at in his subsequent work (Freeman 2009, Freeman and Kozma 2009). I 
will refer to this as the dynamic story.

Since my purpose here is to reflect on what these stories mean for the general im-
age of mathematics, rather than on evaluating or criticizing them, I will allow myself to 
be rather sketchy and vague in their presentation. The level of precision in this presen-
tation will be restricted to what is relevant for forming a public image of mathematics, 
not for a proper scientific evaluation. A more detailed analysis with supportive and crit-
ical references, including my own substantial critiques, are available in (Wagner 2017, 
ch. 5; 2013).

These two cognitive stories (the first well known and widely cited, the second rep-
resentative of more recent, tentative approaches) were chosen because I believe that 
they represent extreme aspects of the image of mathematics spanned by contemporary 



Theoria 33/2 (2018): 305-323

 Cognitive stories and the image of mathematics 307

embodied cognitive science. The two stories can obviously be mediated in many ways, 
and complemented by other stories. For example, the conception of reasoning as sen-
sory-motor simulation and the position of extended cognition are briefly mentioned in 
the discussion —but there are many other approaches that I simply ignore here. I allow 
myself this “neglect”, because my point is not to provide a survey of mathematical cog-
nition theories, but to explore possible images of mathematics emerging from cognitive 
studies. The two extremes cases considered here more or less bound the current range of 
possibilities.

The modular story
I refer to this story as modular, because it divides mathematical reasoning into modules or 
domains in the brain. Mathematical domains start at the level of more or less universal em-
bodied actions (such as handling object collections, walking along a path). These domains 
are the ground on which number reasoning is constructed (adding, for example, can be 
viewed as combining object collections or as combining steps along a path). Then as more 
cognitive domains are brought into relation with the system of previous domains, more ab-
stract mathematical domains emerge (e.g. plane geometry, algebra, calculus, etc.).

In this context, each domain is thought of as a neural circuit made of nodes, each of 
which represents a different mathematical situation. These nodes are internally connected 
by inference links —when the nodes of the premises of the inference are activated, the node 
representing the conclusion is activated as well. This allows new actions to follow from 
given premises or perceptions.

The domains are linked to each other by various kinds of mappings, the most impor-
tant of which are metaphors. Metaphors are a-symmetrical links that allow to carry infer-
ences from one domain to another. They can “ground” an abstract mathematical domain 
in a concrete embodied activity, or link different abstract domains (e.g. relate number-rea-
soning to handling discrete objects, or algebraic inferences to geometric ones).

Metaphors form when different domains are activated together frequently (because 
they are both relevant in a certain kind of situation, such as using numbers when handling 
object collections). According to Hebb’s law, frequently co-activated nodes tend to form 
neural links (under some qualifications that we can set aside in this paper). These neu-
ral links transmit activation between the connected nodes. For example, nodes of the tar-
get domain (e.g. number addition) may be activated when the corresponding nodes of the 
source domain (e.g. putting together collections of objects) are activated.

In the example of the “numbers are object collections” metaphor, inferences involved 
in handling object collections are transferred by the metaphor to the domain of number 
(e.g., the fact that the same object collection can be composed in different ways is translated 
to the claim that the same number can be the result of different addition operations). Table 
1 presents a more complex example: how the cognitive domain of the number line emerges 
from a metaphor linking the continuous line with a set of elements (turning the lines into 
the set of its points), and then blending it with numbers, forming the number line (a blend 
is a stronger, bi-directional kind of mapping, but the precise differences are not important 
for our context).
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Table 1
The metaphors and blends generating the number line, based on Lakoff and Núñez (2000, 281)

Source Domain
The Space-Set Blend Target Domain

Naturally Continuous Space: 
The Line Sets Numbers

The line A set A set of numbers

Point-locations Elements of the set Numbers

Points are locations on the line Elements are members of the 
set

Individual numbers are members of 
the set of numbers

Point-locations are inherent to 
the line they are located on

Members exist independently 
of the sets they are in

Numbers exist independently of the 
sets they are in

Two point-locations are distinct 
if they are different locations

Two set members are distinct 
if they are different entities

Two numbers are distinct if there is 
a nonzero difference between them

Properties of the line Relations among members of 
the set

Relations among numbers

A point O An element «0» Zero

A point I to the right of O An element «1» One

Point P is to the right of point Q A relation “P>Q” Number P is greater than number 
Q

Points to the left of O The subset of elements x, with 
0 > x

Negative numbers

The distance between O and P A function d that maps (O,P) 
onto an element x, with x > 0

The absolute value of number P

Neural links tend to survive if the co-activation of their ends is repeated regularly (that 
is, there are relatively few situations where the origin node is “on” and the target node is 
“off”). If a mapping between two domains is not inference preserving, the co-activation of 
inferences will not be very regular, and the links between them will weaken.1 Therefore, 
those neural mappings that survive and become dominant are inference preserving. This is 
the criterion of best-fit: only the most inferentially conservative metaphors survive.

1 Here is a sketch of an explanation: suppose, that A and B in one domain are connected by an inference 
(A activates B), and that there are links from A to C and from B to D, where C and D lie in another 
domain. Then, an activation of A will activate C, B, and in turn D. But if D is not an inference from 
C (does not represent a situation or action that follows from C), the former will often be inhibited in 
such situations. Due to this inhibition, in many situations B will be activated and D will not, so the 
link from B to D may break. Therefore, if there is no inference link from C to D, the link from B to D 
may disappear. 
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Since no two domains are perfectly isomorphic to each other, metaphorical linking 
may involve only some nodes of the domain or target, or may enforce the creation of new 
nodes or inferences in the target domain that will fortify the inference preserving perform-
ance of the mapping. This is a form of abstraction, which includes the selection of only 
some aspects of a domain or the formation of new entities and conclusions. Nevertheless, 
neural links can sustain some degree of occasional inhibition, so some level of mismatch be-
tween the inferences in the two domains is tolerable.

The overall picture suggested by the theory is that mathematical reasoning is imple-
mented by a system that is in some way reminiscent of formal mathematical languages: we 
have nodes that play the role of propositions, neural links that play the role of inferences, 
and mappings that are somewhat like morphisms. But this analogy should not be pursued 
too far, as it fails to distinguish between a genuinely “natural” metaphor, grounded in intui-
tive and widespread embodied practices, and a forced formal metaphor, which is an ad-hoc 
rhetorical tool for explaining specific points.

Indeed, according to the modular story, some aspects of contemporary formal math-
ematics depend on “unnatural” ad-hoc metaphors (such as thinking of a continuous line as 
a set of discrete coordinates), which are in conflict with our natural understanding (in this 
case, of the difference between continuity and discreteness). Such metaphors violate some 
of our inferences, and lead to gaps between our intuition and formal mathematical theory, 
rendering mathematics less accessible and more artificial.

The dynamic story
The dynamic story presented here starts from Freeman’s research on smell perception in 
animals. If one follows popular presentations of brain science, one might expect each dif-
ferent smell to be represented by a dedicated neuron or small circuit in the brain. But this 
is not what Freeman found. He acknowledges that each smell activates specific kinds of 
chemical sensors in the nose. But since there are many sensors all over the nose, different 
sensors are activated for different sniffs of the same smell. The pulses from these different 
sensors should integrate to a common representation, if we expect the same smell (stimu-
lus) to generate the same behavior (response). Freeman did find such an integration, but 
it was not localized to a specific neuron or a small local circuit in the brain. He found that 
each smell was represented by a large scale typical pattern measured by EEG across the sur-
face of the olfactory bulb.

But the stimulus-response or representation language used above is, according to Free-
man, problematic. First, not just any smell gives rise to a regular pattern – only smells as-
sociated with a meaningful reinforcement (reward or punishment). Second, different in-
dividuals produced different patterns of the same smell. These two facts mean that the 
processing of smells is selectively formed by the brain itself, and not simply given or hard-
wired.

Third, the pattern associated with a smell was not activated automatically whenever 
the smell was introduced. The activation of the smell-specific pattern depended on the gen-
eral situation of the animal (sleepy, hungry, etc.). Finally, the pattern gradually changed 
over time —it would continuously transform over a period of several days. Training the an-
imal to recognize and assign meaning to new smells would also change the patterns associ-
ated with the old smells. These two facts mean that the brain activity pattern is not a rep-
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resentation of the smell itself, but rather an expression of a combination of the smell, the 
animal’s general situation and the animal’s history.

More generally, Freeman explains that the intentions, expectations and actions of an 
individual feed into sensory cortices, activating or inhibiting components in these areas in-
dependently of external stimulus, thus leading to the discovery of a sought real or imagined 
stimuli. Since sensory cortices receive inputs from the brain itself, the perception areas of 
the brain do not simply represent external stimuli, but express the integration of such stim-
uli with intentions, expectations, history, general situation and activity pattern.

The conclusion that Freeman draws is that sensory data processing is a self-organizing 
dynamical system. Sense organs and other brain areas provide the system with input that 
sets it in motion, the “trajectory” of the system is determined by the neural links formed so 
far, and the system’s activity tends to converge to “attractors” —regular patterns of activity 
(or default) associated with known smells (or lack thereof). This dynamic system has un-
boundedly many different possible “input states”, but they tend to converge to a more lim-
ited set of attractors (or dissipate back to a default state). It may also be chaotic in the sense 
that small differences in “input states” may converge to different attractors.

Since the continued learning activity of the individual takes place in a changing en-
vironment (both internal changes of a living body and external environmental changes), 
the dynamic system is exposed to ever changing stimuli, and changes its internal links and 
structures accordingly. This is why, as time goes by, the attractors that express a given smell 
in a given context change.

Freeman claimed that this organization of sense perception is mirrored in higher cog-
nitive functions as well, including computation and abstract reasoning. Following on this 
suggestion, mathematical “stimuli” (representations) would not activate specific nodes in 
small domains as suggested by modular stories, but would rather be reflected in large scale 
patterns of activity along larger brain areas. These patterns will be expressions of the math-
ematician’s general situation, intention, expectation and history, together with the mathe-
matical signs or diagrams to which she is exposed.

A mathematical inference may be thought of as an attractor of the dynamic system —a 
stable pattern of activity that is repeated, given similar stimuli in similar situations. A trans-
fer of reasoning from one context to another, then, will not be instantiated by an inter-do-
main metaphor, but by converging to the same attractor despite exposure to stimuli from 
different contexts. For example, given the stimulus of a number added to itself, our cogni-
tive process may converge to an attractor associated with saying that the sum is greater than 
the initial number. The same attractor on the same brain component may be reached by a 
very different stimulus, say adding a geometric shape to itself. Here we do not associate rea-
soning with two separate modules —one about numbers and the other about shapes, each 
relatively autonomous, and linked to the other by metaphors.

This story opens a much wider gap between our formal mathematical languages and 
the brain dynamics that underlie mathematical reasoning. We can no longer think of the 
two as very similar. Instead, we need to think in terms of unstable causal relations between 
combinations of mathematical representations, expectations, intentions, actions and his-
tory on the one hand, and mathematical performance on the other.
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Four aspects of mathematics, and how the modular and dynamic stories account for them

Here I will consider four aspects of mathematical practice: consensus, generality, innova-
tion and reference. I will try to describe them from the point of view of our two stories. 
The purpose of this exercise is not to explore the explanatory power of each story, but un-
derstand the pictures of mathematics that each story paints around the phenomena. I only 
point out the explanatory limitations of the theories where this entails complementing the 
resulting image of mathematics by some non-cognitive stories.

Consensus
One of the most striking phenomena about mathematics is the strong consensus among ex-
perts. Mathematicians tend to agree on the validity of mathematical arguments much more 
consistently than other scholars do on the validity of their respective arguments. This does 
not mean that there are no disagreements among mathematicians concerning the validity 
of arguments. It only means that given enough motivation, time and opportunity for com-
munication, the mathematicians are far more likely to reach agreement concerning the va-
lidity of a disputed argument (or extract more refined interpretations, each of which is con-
sensually valid or not) than scholars in other fields.

This does not mean that mathematicians are more likely to agree on the importance, 
beauty, originality, difficulty, interest or meaning of arguments. Moreover, this does not 
mean that mathematicians can resolve all doubts concerning the truth (in the restricted 
sense of provability or any other sense) of mathematical statements. Indeed, if an argument 
that is meant to prove a given statement is presented, mathematicians may agree that the 
argument is invalid or incomplete without being able to deny the argument’s supposed con-
clusion (the fact that this proof fails does not mean that subsequent proofs will also fail).

Consensus over validity is not always guaranteed, of course. Cauchy’s original proof of 
the continuity of the limit of a convergent series of continuous functions is typically rejected 
as invalid, but some commentators argue that this rejection depends on a misunderstanding 
of Cauchy’s notion of continuity, functions and numbers (for a review see Schubring 2005, 
431-436). A more recent disagreement can be found in the following quotation: “It had been 
anticipated that O. Gabber would be a co-author of the present paper. He preferred to with-
draw, so as not to be co-responsible for the errors and inaccuracies in it. He is no less responsi-
ble for many of the ideas that we exploit…” (Beilinson et al. 1982, 7). Apparently, the authors 
could not agree at the time on whether all theorems were stated and proved correctly.

But such statements are exceptions, not the rule. Even in the case of a complicated, 
long and deep endeavor such as Wiles’ proof of Fermat’s last theorem, only two years 
(1993-1995) passed from the moment of announcement, through the phase of review and 
finding an error, to correcting the error and a more or less consensual endorsement. In 
physics such a paper might trigger decades of research programs before it would become a 
more or less consensual working theory. In the social sciences it might be the hip new the-
ory that attracts a lot of critique and debate. But in mathematics, the proof reached consen-
sual endorsement within a couple of years.

How would the different cognitive approaches account for this consensus? It is clear 
that the modular story is much more amenable to consensus. The modular story begins 
with more or less universal, everyday embodied actions shaped by our common evolution-
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ary history. This obviously lays the ground for consensus. Furthermore, mathematical met-
aphors are constrained by the “best fit” criterion for inference preservation. Out of the vari-
ous ways to construct mappings between mathematical domains, only those that maximize 
the preservation of inference survive naturally. This further eliminates variety in mathe-
matical reasoning.

However, there is a contingent element in the construction of mathematical meta-
phors. According to the theory, mathematical metaphors emerge between those domains 
that tend to be activated together. This tendency for co-activation may be a cultural-his-
torical variant, rather than a universal. This may explain why the classical Greek mathema-
ticians, who strictly segregated arithmetic and geometry, accompanied diagram 1 below 
with the theorem “If a straight line is cut at random, then the square on the whole equals 
the sum of the squares on the segments plus twice the rectangle contained by the segments” 
(Euclid’s Elements II.4), whereas we are more likely to think of the diagram as an expres-
sion of the algebraic identity (a + b)2 = a2 + b2 + 2ab (in diagram 1, the left hand side is the 
entire divided square, the first two terms on the right hand side are the large and small sub-
squares respectively, and the third term on the right refers to the two rectangles). The met-
aphor relating the geometric situation to an arithmetic/algebraic formula failed to emerge 
(or was inhibited) in the cognition of classical Greek geometers.2

Diagram 1
Euclid’s Elements II.4

There are other sources for mathematical variety, namely the contingencies of imposing 
ad-hoc “unnatural” mathematical metaphors (Lakoff and Núñez (2000) criticize, for exam-
ple, our mainstream arithmetized and formalized mathematical metaphors for continuity, in-
finitesimals and limits of sequences of curves, and suggest alternatives). But the rigid cognitive 
infrastructure behind successful mathematics provides a good basis for a consensual practice.

The dynamic story faces a much bigger challenge here. How can a somewhat chaotic, 
self-organizing dynamical system, that takes into account individual situation, action, in-

2 A full explanation in terms of the modular story would of course have to reconstruct the entire rele-
vant systems of metaphors and point out the differences that led Greek and modern mathematics in 
different directions.
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tention, expectation and history, produce the same result when instantiated by so many 
different individual embodied minds? The only way out is to establish that mathematics is 
not as consensual as it seems.

Indeed, on some levels, mathematical validity is not very consensual. Mathematical 
practice is full of errors, misunderstandings and disagreements of the kind anticipated by 
a dynamic model. The fact that mathematicians can reach consensus (provided they have 
enough time, motivation and opportunity to communicate) may be explained by some-
thing inherent to the mathematical process of communication, rather than to mathemati-
cal cognition itself.

This approach is supported by a historical outlook. The Greeks, for example, had a more 
or less strong consensus around the basic mathematics captured in Euclid’s Elements, but be-
yond that, Greek mathematics was a rather polemical scene (Netz 2004, 62; Lloyd 2012). 
By Arabic times, the accumulation of challenges raised against Euclid’s Elements required an 
answer in the form of Ibn al-Haytham’s Solution of the doubts concerning Euclid’s book (Igh-
bariah and Wagner, 2018). The infamous sixteenth-century dispute between Tartaglia and 
Cardano/Ferrari is known as a debate over precedence and publication rights, but in fact in-
cluded disputes about the very correctness of proposed solutions (Bortolotti 1933).

This polemical style of mathematical disputation, quite common at the time, might 
explain why juridical rhetorical structures were imported into mathematics from legal dis-
course at the beginning of modernity (Cifoletti 1992, 1995). But juridical rhetoric did 
not resolve the insistent debates over the legitimacy of infinitesimals that extended from 
early modernity well into the 19th century (e.g. Alexander 2014, Carnot 1813). Negative 
and complex numbers suffered a similar fate (Schubring 2005). Disputes that superposed 
mathematical validity, social cliques and generation gaps remained popular in the 19th cen-
tury (Ehrhardt 2010, 2011; Wagner 2014, 2016). The Italian school of algebraic geome-
try was confronted with enduring disputes over mathematical validity as late as the 1930s 
(Brigaglia and Ciliberto 2004).

Mathematics has only become as consensual as we expect it to be today during the last 
century or so, but it did have (somewhat weaker) means to reduce dissensus in the past as 
well. Examples are the “formulaic” (but not formal!) language of elementary Greek geom-
etry (Netz 1999), empirical controls during the time when mathematics was more closely 
associated to natural sciences, and Eulerian over-determination of methods (namely, when 
different suspect arguments led to the same result, it was more likely to be endorsed, see 
Sandifer 2007, ch. 31).

Today the most obvious means to guarantee consensus is semi-formalization. Where 
authority, experience, intuition and standard mathematical toolboxes fail to resolve a math-
ematical dissent, partial translations that increasingly approximate some kind of formal-ax-
iomatic system can serve as decisive arbitrators.3 Those arguments and problems that we 
believe to be non-translatable to formal languages, or that remain undecidable given such 

3 I am referring here to the kind of everyday dispute between mathematicians that remains undecided 
until one side “writes it down in more detail” —that is, according to the standards of a more rigorous 
level of semi-formalization, where many such levels separate a real-life proof from a fully formalized 
one. Writing down a proof in a purely formal-axiomatic language is, with few exceptions, only some-
thing that we believe to be attainable, not something we actually attain (either because it is useless or 
because it would require an unreasonable amount of time).
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translation, are simply exiled from mathematics to less consensual domains, such as phi-
losophy or natural sciences. Thus, some problems that had been considered mathematical 
later became non-mathematical (the paradoxes of infinity were exported to philosophy and 
theology,4 and the validity of the parallel postulate became a physical question).

My point is that since the dynamical story does not seem to be able to account for 
consensus by itself, it would have to relegate consensus to a non-cognitive aspect of 
mathematics. The obvious candidate, as far as I can see, is the historically situated inter-
subjective processes of deliberation and disciplinary demarcations based on semi-formal-
ized languages.5 However, we do not have to draw a sharp line to distinguish “internal” 
cognition from “external” formal representation and inter-subjective deliberation. Ex-
tended cognition would view different brains, signs and tools as semi-autonomous ele-
ments of a single dynamic cognitive system. If one wishes to understand cognition in this 
way, one links cognition to social authority and power, as signs and tools do not float in a 
discursive universe of purely free and good will, but are also subject to mechanisms of so-
cial control.

Generality
Mathematical reasoning is famous for its capacity to draw a general result from a particular 
representation. This applies to geometrical representations, where a diagram of a specific 
triangle can support a general theorem about all triangles, as well as to algebraic representa-
tions, where manipulating the particular variable sign x can provide us with knowledge rel-
evant to all numbers.

The modular account of this phenomenon would rely on the universal structures that 
cognition extracts from representations. Indeed, when two cognitive domains are linked, 
they are never linked perfectly, because no two cognitive domains are perfectly isomorphic. 
The act of linking selects a subset of the two cognitive domains (possibly adding new enti-
ties to either domain) so that inference preservation is maximized. When we reason math-
ematically, that is, when we apply the mappings that link the relevant cognitive domains, 
we extract from the representations on which we operate a core that is approximately in-
ferentially isomorphic to an abstract and general mathematical situation. As a result, we do 
not reason on the specific representation, but on its mental abstraction, which guarantees a 
general result.

There is some interesting literature on procedures that could fit this narrative in the 
context of diagrams. Shin (1994) shows how we can operate abstractly on Venn diagrams. 

4 To the extent that such paradoxes are formalizable, they are still a mathematical concern.
5 One may ask why other sciences cannot apply the same strategy for generating consensus. A general 

discussion of this point is available in Wagner (2017, ch. 3). Briefly put, other sciences are constrained 
by their empirical references (natural or social sciences) or intimate relation to the ambiguities of hu-
man language (cultural studies and lettres in the French academic sense). Therefore, they cannot afford 
to assign jurisdiction to a formalized arbitration mechanism such as a formal language. Those aspects 
of science that can be formalized (e.g. game theory, formal logic, asymptotic computational complex-
ity, axiomatic physics) end up being re-categorized as part of mathematics. In a sense, formalization has 
become so synonymous with mathematics, that no other science can rely on it for consensus without 
becoming mathematical itself. 
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Avigad et al. (2009) extend the observations of Manders (2008) to rigorously codify gen-
eral processes of reasoning implicit in Euclidean geometric diagrams. This process is even 
more salient in the context of variables and other general symbols, where we often reason 
formally, following syntactic rules, rather than semantically, following the meaning of signs. 
Of course, the use of diagrams may be misleading, but the modular story would relate that 
phenomenon to problematic metaphors.

A dynamic story of cognition would find it hard to explain how we reason univer-
sally on particular diagrams. If reasoning is the integration of stimulus, expectations, in-
tentions, general situation and individual history by a somewhat chaotic dynamical sys-
tem, why would different diagrams lead the dynamic system towards the same attractor 
(expressed as a practice of reasoning or inference)? Moreover, even if generalizations do 
occur (in the sense of triggering the same reasoning by different representations), how 
come the generalization emerging from, say, a bunch of triangle diagrams, corresponds to 
the logical-mathematical category of triangle, and not to some other ad-hoc, contextually 
emergent category?

The answer, as above, would be that we don’t always reason correctly from diagrams, 
and that different diagrams can lead us to different results. The extreme cases are diagrams 
that represent a qualitatively incorrect situation, as in the “proof” that all triangles are isos-
celes, which is based on drawing a certain intersection of lines inside the triangle rather 
than outside (Kline 1972, 1006-1007; see diagram 2). What makes this “proof” appear 
convincing for people with standard school training in Euclidean geometry is probably the 
familiar diagrams of bisectors intersecting inside a triangle with perpendiculars to the sides 
from the intersection point. These diagrams are a prominent part of standard Euclidean ge-
ometry courses. They make the wrong diagram appear plausible, and trigger the dynamic 
process of reasoning toward mathematically wrong results. Even algebra provides examples 
for wrong inferences that are based on over generalizations of certain patterns (considered 
here as visual patterns, a sort of diagram made of symbols). This is the case of “x2 = x im-
plies x = 1”, which may appear to hold because it is part of our standard tool-box when x is 
replaced by positive numbers (this kind of trick is key to many 1=0 “proofs”).

My point is that reasoning generally from specific diagrams in mathematical practice 
cannot be reduced to some cognitive mechanism that would extract correct generaliza-
tions from particular representations. The underlying cognitive mechanism should actu-
ally account for the widespread errors due to diagrams that we find in actual practice. We 
should also note that qualitatively correct diagrams may also mislead, when they represent 
only one of several possible cases. Moreover, “incorrect” diagrams are not only an obstacle; 
they can also serve to advance creative reasoning (e.g. Grosholz (2007) and Wagner (2010), 
where the infinite is depicted as finite and a certain unknown value is wrongly depicted as 
1, respectively). This generally occurs when diagrams express several incompatible but rel-
evant perspectives at once. 6 This holds for algebraic representations as well: different repre-
sentations can suggest different inferences, and the ambiguity of algebraic notations can be 
highly productive (Wagner 2017, ch. 4; 2009; Arcavi 1994).

6 Ambiguity can be productive, of course, even if it’s not contradictory. See Giardino (2013) for a dis-
cussion.
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Diagram 2
“Proof” that every triangle ABC is isosceles: “one constructs the angle bisector at A of triangle ABC 
and the perpendicular bisector of side BC [as in the figure]. If these two lines are parallel, the angle 

bisector is perpendicular to BC and the triangle is isosceles. We suppose, then, that the lines meet at 
O, say, and we shall still “show” that the triangle is isosceles. We now draw the perpendiculars OF to 

AB and OE to AC. Then the triangles marked I are congruent, and OF=OE. The triangles marked III 
are also congruent, and OB=OC. Consequently the triangles marked II are congruent, and FB=EC. 

From the triangles marked I we have AF=AE. Then AB=AC and the triangle is isosceles”  
(Kline 1972, 1006-1007)

All the above fits well with the dynamic story. Indeed, if one follows this story, a dia-
gram is a trigger for the convergence of the system to certain attractor (here, some inference 
or other expression of reasoning). Each attractor has a basin of attraction, namely, those sit-
uations and stimuli (here, diagrams) that trigger convergence to the attractor. The scope 
of such a basin of attraction needn’t be identical with any mathematical category: it could 
include only some of the mathematically relevant diagrams (those we are most used to as-
sociate with that form of reasoning), and may even include some diagrams that are math-
ematically incorrect, leading to mathematically false or mathematically new and creative 
inferences. These operational, relative and constantly changing boundaries of the basin of at-
traction of some act of reasoning would escape the problems inherent in attempts to under-
stand reasoning in terms of extraction of an essence or definitional features from particulars.

But the problem remains: given such a dynamic story, how can we reason universally 
and consensually on different particular representations, as we do, for example, in Eucli-
dean geometry? A dynamic account cannot reduce this to mathematical cognition alone. 
Correct general reasoning from particular representations would require training with 
many different alternative representations and the accompaniment of other cognitive sup-
ports, such as textual or verbal commentary. As in the case of consensus, if we follow the 
dynamical story, mathematical generalization from specific representations would have to 
be based on inter-subjective controls, and not only on individual cognition.
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Innovation
Many believe that mathematics envelops all its truths and entities in its definitions and axioms. 
But even those people who believe that these definitions and axioms are also somehow envel-
oped in our most basic interactions with numbers and figures, won’t be able to deny that there’s 
a history of discovery in mathematics, and therefore innovation. Alternatively, one may consider 
mathematics to involve a strongly conventional or constructive element, and therefore proper 
invention of new mathematical entities. The question for us, however, is: what is the image of 
mathematical innovation supported by the modular and dynamic cognitive stories?

The modular approach relies on co-activation of domains to initiate new mathemati-
cal metaphors. This means that if some new cultural, technological or other circumstances 
tend to make simultaneous use of two previously dissociated domains, some new mathe-
matics may result. For example, if arithmetic and geometric practices apply in distinct situ-
ations, but, for some reason, at a certain time and place, begin to be practiced in close prox-
imity to each other (as different approaches to the same problem, or in a specific practical 
context that uses both intermittently), then metaphors may link the two domains, and pos-
sibly carry new entities with them.

More specifically, geometrical magnitudes that did not have a numerical expression, 
may give rise to new numbers, following “a geometric magnitude is a number” mapping. 
A classical example is the introduction of irrational roots. Consider a right angle triangle 
whose sides are both equal to 3¼. What is the hypotenuse of this triangle? The Pythagorean 
theorem is supposed to provide an answer. But the sum of the squares of the sides is 169/8, 
and this number has no rational root, and so, in a system where “number” is synonymous 
with a positive integer or a fraction of positive integers, the hypotenuse will not have a nu-
merical value. When this very problem appears in Bhāskara II’s Līlāvatī (12th century In-
dia, but this maneuver is echoed in earlier texts, and in the Arabic and medieval European 
cultures as well), the internal commentary reads: “Since it [169/8] has no root, the hypot-
enuse is this very [number] at the root [sign]”.7 In other words, lacking a precise numerical 
root, this magnitude is to be expressed by the juxtaposition of the root sign and the number 
whose root is sought, yielding (in modern notation) 169/8 . As a geometrical magnitude 
is carried into the world of number, a new kind of number is born.

Another example, central to the work of Lakoff and Núñez (2000, 233-235) is the in-
troduction of infinities and infinitesimals. Consider the unbounded, unending sequence 
of positive integers. Project onto this arithmetical domain the inferences of the domain of 
processes that reach an actual end. This imposes a new final number, which follows all nat-
ural numbers, called infinity.

These examples of innovation all depend on transferring something from one domain to 
another, thereby creating a new entity. But if we replace the modular approach by a dynamic 
one, it would make little sense to divide mathematics into components which exchange in-
ferences or entities. In a dynamic setting, if a new geometric representation is provided, and 
I intend or expect to do an arithmetical operation, the dynamical system might converge to 
an existing attractor (transferring an inference from geometry to arithmetic), or something 
completely different may happen (which may be either nonsense or a new idea).

7 Asya mūlābhāvāt karaṇīgata evāyaṃ karṇaḥ (Sarma 1975, 276, quoting the prose following verse 139 
of the Līlāvatī).
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So in a self-organizing dynamic setting, we can expect not only the transfer of inferences 
from one practical context to another, but also emergence of new phenomena, that are not 
reducible to previous practices. One example for such emergence, which goes beyond trans-
fer from context to context, is the emergence of Arabic algebra. This 9th century innovation, 
which kept evolving over several centuries, builds on methods for solving linear equations 
in one or more unknowns, combined with the Babylonian methods for finding the sides of 
a rectangle, given some combinations of its area, diagonal and sides (Oaks and Alkhateeb 
2005, 416-418). But when these methods were consolidated together by Arabic mathema-
ticians, the product was much more than the sum of its parts. The entity that stands out in 
this new development is the equation (although not yet the symbolic equation of the late 
Renaissance and early modernity). This is a mathematical unit, which results from arithme-
tic operations applied to numbers and unknowns, has its own distinctive formal character-
istics (expressed by a dedicated language — an artificial language of sorts), and can be sub-
jected to distinct operations. It is the focus of a new set of mathematical practices.

The interpretation of an equation can be geometric or arithmetic, theoretical or practi-
cal, so the equation serves as a pivot between these contexts (Oaks 2007, 2009). Equations 
subsume their different possible interpretations under their unified language. But equa-
tions are not a geometric entity brought into arithmetic or vice versa, nor are they meta-
phorical projections of some elementary embodied practice onto other mathematical do-
mains. They emerge at the meeting point of domains, contexts and terminologies, but are 
not reducible to a unidirectional hierarchical transfer between domains.

The algebraic language served not only as an analytic tool for solving problems, but also 
as an organizational principle allowing to catalogue problems and produce complete com-
pendia of solutions (such as Omar Khayyam’s list of cubic equations, which were solved 
geometrically — see Netz 2004). A comparison of earlier treatments of the very problems 
later solved by Arabic algebraic methods demonstrates this point. None of the earlier sys-
tems produced a unified whole encompassing a scope similar to that of Arabic algebra.8

All the above aspects are within the scope of the dynamic story. The modular story 
would be hard pressed to include them, and would therefore require some sort of comple-
menting discursive account of mathematics to account for emergence and organization of 
knowledge beyond best-fit metaphorical transfer.

Reference
One of the most widespread philosophical debates concerning mathematics is the onto-
logical debate: what do mathematical signs represent or refer to? The idealization of math-
ematics goes hand in hand with a platonic stance: mathematical signs refer to eternal ideal 
objects (or relational structures) whose existence is a-priori and independent of the ex-
istence of humans. A more contemporary approach (the indispensability argument) is to 
claim that due to the inextricable entanglement of mathematics and natural sciences, math-

8 Even systems that are as complex and sophisticated as Arabic algebra, such as Indian algebra, have a 
clearly different character. Indeed, Indian determinate quadratic algebra is organized less around equa-
tions in one variable and more around Babylonian-like problems (e.g. given the product and sum, find 
the two unknowns). As a result, the two algebras end up evolving in rather different directions —even 
before we bring in the letter-variable notations of Viète and Descartes.
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ematical signs involved in successful scientific practice should be considered as having a 
reference no less real than that of the signs representing electrons or large physical bodies 
—even though the referents of mathematical signs cannot be located in space and time.

Those for whom mathematics is an artificial, mechanical and inhuman science would 
tend to prefer formalist approaches, reducing mathematics to arbitrary signs and conven-
tional rules. In between these two extremes, there are several other possibilities, including 
various conceptualist approaches (claiming that mathematical signs refer to ideas or ab-
stractions inherent to the human mind) and modal approaches (according to which math-
ematical signs refer to possible objects or relational structures).

All approaches confront the same underlying problems. Ontologies that detach math-
ematics from empirical experience make it difficult to explain its success in describing natu-
ral phenomena. Ontologies that detach mathematics from the human mind or experience 
make it difficult to explain how we come to know mathematics. And ontologies that detach 
mathematics form ideal eternal forms make it difficult to explain why mathematics is (or ap-
pears to be) a-priori and universal. Embodied cognition puts an interesting twist on the on-
tological story. It obviously grounds mathematics in embodied experience and the embodied 
mind, but the modular and dynamic approaches take different directions from there.

According to the modular story, a mathematical entity is a mental representation 
whose inferential structure depends on metaphorical links grounded in embodied experi-
ence. A mathematical sign activates the various linked domains involved in the metaphors 
that represent the relevant mathematical situation, and in turn activates the associated in-
ferences. Since this chain of metaphors is grounded in embodied action, the use of mathe-
matical signs for communication or thinking links back to the body, and, if not inhibited, 
triggers embodied action (such as movement of the body).

Marghetis and Núñez (2013) record such bodily action among mathematicians, ex-
pressing mathematical relations and concepts by corresponding gestures. This holds for 
pedagogical contexts as well, where children accompany their mathematical learning with 
gestures (Radford et al. 2007). This also fits with Barsalou’s (2009) argument that cogni-
tion is implemented by (possibly unconscious) simulations of sensory-motor activity by 
relevant neuronal populations. One might also interpret mathematical reference as the 
correlation of different activations of some sensory-motor brain module with a specific ac-
tivation (a sign) of the same or another module (sign is to be understood here in a concrete 
sensory-motor sense, rather than a computational or abstract sense).

This story is very different from the one told by the dynamic approach. From the dy-
namic point of view, mathematical signs do not need a corresponding representation in the 
brain (some node that is activated as one is exposed to the sign). Instead, they are supposed 
to bias the brain’s dynamical system toward certain attractors (Freeman 2009), which proc-
ess is not necessarily reducible to the activation of some brain node.

The complex and under-determined relation between a sign and the inferences it trig-
gers is expressed in one of my favorite quotes from the entire history of mathematics: “if 4 
were the half of 12, what would be the 1/3 of 15” (della Francesca 1970, 48), which has vari-
ants in several medieval Iberian and Italian arithmetic treatises. This strikes us as nonsensical. 
Indeed, 4 is simply not the half of 12! But if we consider the context, we quickly realize that 
this is a question about proportions or the rule of three (suppose 4 kilos of tomatoes cost half 
of 12 Euros, how many kilos for 1/3 of 15 Euro?). The point is that the language of the prob-
lem highlights the tension between the face value of a sign and its corresponding value. In 
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this question, the value of the sign “4” is 6, and we are asked for the sign corresponding to the 
value 5.

When it comes to more advanced mathematical signs like the variable x, ambiguity is not 
just about the many possible values that it can subsume, but also about its possible undecided 
fluctuation between several formal-syntactical roles (numerical variable, formal variable, vari-
able over different mathematical domains), as analyzed in Wagner (2017, ch. 4; 2009).

Things get even more intricate when we consider representations of impossible math-
ematical objects – representations that correspond or refer to no mathematical object that 
fits the relevant mathematical framework. For example, in order to prove theorem III.10 of 
Euclid’s elements (“A circle does not cut a circle at more than two points”, see diagram 3), 
one draws a diagram of the impossible situation where two circles intersect at four points, 
and reasons by contradiction. Similarly, in order to find the real solution 4 of the real equa-
tion x3 = 15x + 4, Bombelli went through what he himself considered as the “sophistic” 
(and many others as contradictory or impossible) number 121 (Wagner 2017, 50-51; 
the fact that imaginary numbers were later successfully incorporated into mainstream 
mathematics is irrelevant for the cognitive account of those who did not consider them as 
legitimate mathematical entities).

Diagram 3
Euclid’s Elements III.10

From a modular point of view this poses difficulties. A sign or a diagram is supposed to acti-
vate a practical embodied domain (such as, in the above examples, drawing shapes or taking 
the side of a square), and relate it to other domains by inference preserving mappings. Rep-
resentations of impossible objects clearly violate inference preservation between the sen-
sory input and our mathematical concepts. So how come we reason successfully with such 
representations? In the case of the imaginary numbers, success may be interpreted as the 
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slow and hesitant birth of a new mathematical metaphor and entities (the modern complex 
numbers), but in the case of the counterfactual diagram this account would fail.

The dynamic approach to cognition faces no such difficulties. The diagram or sign 
of counterfactual or impossible objects need not represent anything. They simply need to 
bias the dynamical system in favor of certain attractors, that is, the sort of coordination of 
action, expectation and intention that we term “inference”. A reference is not always re-
quired. When someone throws a crazy diagram or sign at you, you don’t ask what it refers 
to —you simply catch it.

Conclusion

The modular story supports consensus and generality without making them as rigid as a 
formalist account of mathematics would. It allows innovation in the form of carrying infer-
ences and entities from one mathematical domain to another, but is limited in its ability to 
account for more intricate forms of emergence. It grounds signs in embodiment rather than 
in external references, but would have trouble accounting for the use of representations of 
impossible objects.

The dynamic story is difficult to reconcile with consensus and generality, unless one as-
signs them (plausibly, I believe) to intersubjective communication and formalization, rather 
than anchor them in individual mathematical reasoning. It allows for the emergence of math-
ematical innovations that go beyond the transfer of knowledge from one domain to another. 
Instead of reference, mathematical representations (consistent or absurd) are triggers that di-
rect the dynamic system toward existing or new attractors, giving rise to acts of inference.

Both accounts are fallibilist, but the modular story is perhaps more conservative. It at-
tempts to universalize and rigidify mathematics by grounding it in a robust hierarchy of 
precise, universal and “natural” metaphors. Divergence is possible, but the criterion of “best 
fit” (maximal preservation of inferences) marks some mathematical ideas as better or more 
natural than others.

The dynamic story is even more fallibilist. It makes individual variation, creativity and 
error a more constituent part of mathematical practice. It also assigns more responsibility 
to social structures for normalizing mathematics and making it appear absolute. But both 
stories make mathematics a human creation, rather than an absolute given.

My philosophical inclinations obviously favor the dynamic story, despite its flaws as a 
scientific theory (e.g., what kind of predictions can one make about mathematical practice 
based on this story? Without strong neural grounding, which it does not yet have outside 
sensory cortices, it is almost unfalsifiable and therefore not very scientific —but the modu-
lar account does not fare much better on this front). However both approaches, as well as 
their various theoretical combinations and emendations, are better, I believe, than the ab-
solutist accounts, which force mathematics on us from the outside.

I believe that the cognitive approaches can breathe new life and plausibility into all 
sorts of conceptualist and social constructivist accounts by protecting them from deterio-
rating to unguarded nominalism, where anything goes. By binding mathematics to our bio-
logically and socially constrained, yet plastic brains and bodies, they turn mathematics from 
a regulative ideal or mechanical constraint into a tool to work with. Thinking about math-
ematics this way, I believe, is much healthier.
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