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ABSTRACT: The main goal of this paper is to provide a ground-analysis of two classical connectives 
that have so far been ignored in the literature, namely the exclusive disjunction, and the ternary disjunc-
tion. Such ground-analysis not only serves to extend the applicability of the logic of grounding but also 
leads to a generalization of Poggiolesi (2016)’s definition of the notion of complete and immediate 
grounding.
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RESUMEN: El objetivo principal de este artículo es el de ofrecer un análisis-fundamento para dos conectivas 
clásicas que han sido ignoradas, hasta ahora, en la literatura; estas son la disyunción exclusiva y la disyunción 
ternaria. Este análisis-fundamento no solo sirve para ampliar la aplicación de la lógica de la fundamentación 
sino que también conlleva la generalización de la definición de Poggiolesi (2016) de la noción de fundamen-
tación completa e immediata.
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1. Introduction

In the last decade the notion of grounding has become prominent in philosophy. Ground-
ing is usually taken to be a relation amongst truths or facts which is non-causal and explan-
atory in nature. This relation has been studied from several different perspectives: some 
papers retrace the history of grounding (e.g. see Rumberg (2013); Sebestik (1992)), others 
deal with the metaphysics of grounding (e.g. see Fine (2012b); Schaffer (2009)), others an-
alyze the properties that the grounding relation might enjoy (e.g. Krämer (2013); de  Rosset 
(2013)). Yet another approach concerns the logic of grounding: several formal theories of 
grounding aim at clarifying this non-causal and explanatory relation with respect to logi-
cal connectives. These theories are of several types but it is possible to classify them in the 
following way.1 First of all, most formal theories of grounding take the notion of ground-
ing as primitive, namely they assume grounding to be a fundamental notion that cannot 
be defined in terms of others; in this type of theories, the motivation for choosing certain 
grounding axioms (or rules) rather than others mainly relies on appeal to our intuitions.2 
In these theories, grounding is either formalized as a connective (see Correia (2014); Fine 
(2012a); Schnieder (2011)) or as a predicate (see Korbmacher (2017)); in either ways, logi-
cal axioms or rules for the classical connectives of conjunction, disjunction and negation, as 
well as for universal and existential quantifiers, are proposed.

There also exists an approach, which is mainly inspired by the insights of the Bohe-
mian thinker Bernard Bolzano, that takes grounding to be a notion characterizable in 
terms of others (see Poggiolesi (2016)): according to this approach grounding can be seen 
as a special type of derivability relation where complexity grows from the grounds to the 
conclusion. In this framework, grounding is formalized both as a metalinguistic relation 
(since it is a special type of derivability and derivability is a metalinguistic relation) but also 
as a connective, and grounding principles for the classical connectives of negation, conjunc-
tion and disjunction, but also for the relevant implication,3 have been proposed.

The aim of this paper is to further develop the study of grounding from a logical per-
spective. In particular, we will consider the two classical connectives of exclusive disjunction 
and trivalent disjunction and we will elaborate an adequate logical grounding analysis of 
them. We will do this by employing the formal theory of grounding developed by Poggio-
lesi (2016). In Section 2, we will discuss the relevance of developing a grounding analysis 
of the connectives of exclusive disjunction and trivalent disjunction, and of using Poggio-
lesi’s approach as an appropriate framework for this study. After having used Section 3 to 
briefly remind the reader of Poggiolesi’s approach, we will dedicate Section 4 to deal with 
the grounding analysis of exclusive disjunction, while Section 5 to deal with the grounding 
analysis of ternary disjunction. Section 6 will serve to evaluate the results obtained, whilst 
Section 7 to draw some conclusions.

1 This classification is mainly inspired by Poggiolesi (2020b).
2 See McSweeney (2020).
3 See Poggiolesi (2020a).
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2. Motivational background and related methodology

In this paper we will develop a grounding analysis of two disjunctions that have not been 
treated in the (grounding) literature so far, namely the exclusive or, as well as the triva-
lent or. We will do this by using the formal theory of grounding developed by Poggiolesi 
(2016). In this section we will discuss the relevance and interest of studying these new non-
standard classical connectives from a grounding perspective, as well as the appropriateness 
of the chosen methodology in this context.

Let us first of all remind the reader what the exclusive disjunction and trivalent dis-
junction are. The exclusive disjunction is a disjunction between two options that are in-
compatible with each other. Typical examples of exclusive disjunction are:

— John is either the brother of Tessa’s mother or he is the brother of Tessa’s father,
— with four euros, John either buys a sandwich or a drink,
— tonight Benjamin will either go to the theater or to the cinema.

The trivalent disjunction is a disjunction amongst three options at the same time and such 
that these options are not mutually exclusive. Typical examples of trivalent disjunction are:

— Fabrice will have breakfast with Anne or lunch or dinner,
— John is very talented in playing clarinet or he has been practicing for a long time or 

he really enjoys playing the instrument,
— Ann will watch a Tarantino movie or a Scorsese movie or a Lynch movie.

Formal theories of grounding have so far only been dealing with the classical connectives 
of conjunction, disjunction, negation and the quantifiers. The choice of these connec-
tives and classical logic is typically motivated on metaphysical grounds: the relation be-
tween the classical conjunction, disjunction, negation, quantifiers and their grounds is a 
relation of metaphysical priority and formal theories of grounding are supposed to capture 
this relation at the formal level. However, quite recently, several scholars, such as Hofweber 
(2009); McSweeney (2020); Merlo (2020); Smithson (2019), have been arguing against 
this view: according to them, two relations of grounding need to be distinguished, one met-
aphysical and the other logical, and the link between logical connectives and their reasons 
counts as an example of the latter notion rather than the former. Therefore, according to 
this novel perspective, formal theories of grounding deal with a logical grounding relation.

This paper focusses on formal theories of grounding, but largely remains neutral as 
concerns this dispute (although we will return to it in the penultimate section). Whichever 
relation —be it metaphysical or logical— these theories are supposed to capture, since they 
are formal theories, they can themselves become the object of a study that shows their rel-
evance, strength and utility from a logical point of view. Actually, it is quite usual to study 
formal theories from this angle; if, for example, we consider formal theories of modalities, 
they have been the object of deep mathematical analysis independently from their philo-
sophical applications i.e. independently from whether they are looked at as capturing logi-
cal necessity or metaphysical necessity, see Blackburn et al. (2001). In this kind of research, 
standard logical questions are addressed, like: what results can be proved with these theo-
ries? Can we use them to solve paradoxes? How wide is their applicability? This paper can 
be seen as taking some steps in this direction, insofar as its aim is precisely to extend for-
mal theories of grounding to cover connectives that have not so far been considered. Need-
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less to say, the wider the applicability of the formal theories of grounding, the stronger and 
more attractive their logical interest is. Moreover, as we will try to show in Section 6, a wide 
applicability also lead to the identification of new and interesting philosophical features.

If one accepts the relevance of a logical perspective on formal theories of grounding, 
and the interest of applicability and extendability, one still has to decide which less stand-
ard connectives to consider first. Why begin, as we do, with exclusive and trivalent dis-
junctions? Most importantly, because among all classical connectives considered to date, 
disjunction is without doubt the most controversial one. One controversial concerns the 
grounds of a disjunction: indeed, it is the connective on which the several formal theo-
ries of grounding differ. On the one hand, under most approaches, the logical grounds of 
a disjunction are either both disjuncts or one of them (see Correia (2014); Fine (2012a); 
Schnieder (2011)); however, this way of treating disjunction creates the famous overde-
termination phenomenon (see Koslicki (2015)), which basically consists in one disjunc-
tion being determined by more than one ground. By contrast, Poggiolesi (2016) introduces 
the notion of robust condition (see the next section for a definition) which intervenes in the 
grounds of disjunction. As she shows, this allows her account to overcome the overdeter-
mination problem and settle the logical grounds of the or in a complete way.4 Another con-
troversy is the aforementioned one between metaphysical and logical grounding: indeed, 
the grounding-analysis of disjunction is one of the main disputed cases in this debate. In 
particular, according to Hofweber (2009); Merlo (2020), the relation between a disjunc-
tion and its disjuncts cannot be unproblematically conceived of in terms of metaphysical 
priority. In sum, the case of disjunction is typically questionable and a source of debate in 
the grounding literature. For this reason, a study of relative disjunction connectives might 
shed light on the fruitfulness of different approaches, or on these debates, insofar as they 
give a glimpse of how they can apply beyond the case of the classical disjunction.

Finally, let us explain why we work primarily with the theory developed by Poggiolesi, 
and not with the most well-known theories of Fine (2012a) or Correia (2014), to investi-
gate the grounds of the exclusive disjunction and the trivalent disjunction. There are three 
main reasons for this choice. The first is generality: it has recently been proved by Poggio-
lesi (2020c)) that her theory is more general than the one developed by Fine (2012b), i.e. 
that there exists a formal translation according to which given Poggiolesi’s approach, we 
can recover each Finean grounding relation between logical connectives and their grounds. 
The converse does not necessarily hold. Therefore, if we have a grounding analysis of, for 
example, trivalent disjunction according to Poggiolesi’s approach, we can obtain a ground-
ing-analysis of trivalent disjunction according to Fine’s approach, whilst the converse is not 
necessarily true. The second concerns the previously mentioned issue of overdetermination: 
as already noted, Poggiolesi’s theory does not encounter the problem of the overdetermi-
nation of disjunction and thus looks as more promising for treating other types of disjunc-
tion. The third is structural extendability. Poggiolesi’s theory is based on a characterization 
of the notion of grounding as a special form of derivability; this characterization repre-

4 We emphasize that Poggiolesi aims to capturing the notion of complete grounding, that is different 
from the more famous notion of full grounding. We have the complete grounds of a certain truth A 
when we have a maximal set of all truths that can contribute to explain A. See Poggiolesi (2020a) for 
further details.
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sents the formal basis to justify certain grounding rules (in particular, Poggiolesi (2018) 
puts forward grounding rules that are proved to be equivalent to the definition of the no-
tion of complete and immediate grounding). In contrast, other formal theories of ground-
ing defend their grounding rules or axioms on a case-by-case basis by appeal to intuitions. 
To this extent, Poggiolesi’s framework is naturally —or structurally— extendable, by ap-
plying the general definition of grounding to the new connectives and seeing what rules re-
sult, whereas other theories are not: they give little structural indication of how they would 
be extended. As we will see in the next section, the grounding —analysis of the exclusive as 
well as ternary disjunctions will lead to a natural generalization of Poggiolesi’s approach it-
self, but also a natural test-case for her extendable, principle— based approach. As so often, 
the formal principle-based framework, when applied to new cases, may give guidance where 
intuitions might be weaker or lacking.

3.  A definition of the notion of complete and immediate formal grounding in the classical 
framework

We use this section to briefly recall the results of Poggiolesi (2016) for capturing the notion 
of complete and immediate grounding, which will play an important role in the sequel. Two 
very simple ideas motivate it. The first consists in organizing all formulas of the propositional 
classical language in a grounding hierarchy: each level of the hierarchy contains formulas of 
different complexity, with complexity increasing from bottom to top. We will call this com-
plexity g-complexity to differentiate it from the standard notion of logical complexity.

Once all formulas are organized into the hierarchy, the task is to identify the formulas 
that stand in a dependence relation. But how is the dependence relation formally defined? 
By the two clauses of positive and negative derivability. Positive derivability states that the 
conclusion should be derivable from its grounds, while negative derivability states that the 
negation of the conclusion should be derivable from the negation of each ground. Whilst 
it is often assumed that positive derivability is a necessary condition for grounding (e.g. see 
Rumberg (2013)), negative derivability is specific to Poggiolesi’s approach. Negative deriva-
bility formalizes the idea of variation: in a grounding relation not only the conclusion is de-
rivable from its grounds, but also if something is modified in the grounds, this modification 
needs to affect the conclusion as well. In the negative derivability clause of Poggiolesi, the 
variation is conveyed by negating all the grounds en bloc.

As already mentioned, the account put forward in Poggiolesi (2016) involves a distinc-
tion between grounds and robust conditions, which can be described briefly on the exam-
ple of a disjunction like A ∨ B, in a situation where the formula A is true. In this case, A is 
certainly a ground for A ∨ B; but in order for A to be the complete ground for A ∨ B, it is 
necessary to specify that B is false (i.e. that B is not also a ground for A ∨ B); in other terms, 
it is the falsity of B that ensures that, or is a (robust) condition for A to be the complete 
ground for A ∨ B. Thus, A is the complete and immediate ground for A ∨ B under the ro-
bust condition that B is false. The reader is referred to Poggiolesi (2016) for a detailed ex-
planation and discussion of the idea of robust conditions in a grounding framework. Ro-
bust conditions are denoted by square brackets and will be introduced in Proposition 8.

We now present the formalism inspired by these ideas. We refer the reader to Poggio-
lesi (2016) for an even more detailed explanation of the notions introduced here.
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Definition 1. The classical language c is composed of a denumerable stock of propo-
sitional atoms (p, q, r, ...), the logical operators ¬, ∨ and ∧, the parentheses (, ). The 
connectives → and ↔ are defined as usual; formulas, denoted by the letters A, B, 
C, ..., are generated in the standard way and the symbol ⊥ is defined as A ∧ ¬A.

Once the classical language c is given, we can standardly define, by means of the classical 
Hilbert system C (e.g. see Troelstra and Schwichtenberg (1996)), the notion of classical de-
rivability. We will write M  C A to denote the fact that the formula A is derivable in the 
Hilbert system for classical logic C from the multiset of formulas M.

We now introduce the key notion of g-complexity, which is a way of assigning a num-
ber to each formula of the language c. The way that number is calculated reflects deep 
grounding-relevant features. As we will see, g-complexity leads to the identification of the 
relation of being completely and immediately less g-complex: if a multiset5 M is completely 
and immediately less g-complex than a formula A, then the sum of the g-complexity of its 
members is one less than the g-complexity of A.

Definition 2. As it is standard, we call atoms as well as negation of atoms literals. l, l ’, 
... denote literals.

Definition 3. The g-complexity of a formula A ∈ c, gcm(A), is defined in the fol-
lowing way:

— gcm(l) = 0,
— gcm(¬¬A) = 1 + gcm(A),
— gcm(A  B) = gcm(¬(A  B)) = 1 + gcm(A) + gcm(B).

where the  symbol stands for either conjunction or disjunction.

To understand the notion of g-complexity, it must be kept in mind that ground-
ing is concerned entirely with truths. Accordingly, the appropriate notion of complex-
ity should track relationships among the truths expressed by the formulas if they were 
true. If A and B express truths, then the truth expressed by A ∧  B or A ∨  B is obtained 
from the previous truths using a single operation, just as the formulas A ∧ B and A ∨ B 
are constructed from the formulas A and B using a single connective. Counting the con-
nective in this case is faithful to the relationship of interest among truths and indeed 
gcm(A  B) = gcm(A) + gcm(B)) + 1.

By contrast, the negation is different, because there is no sense in which if a formula of 
the form ¬A expresses a truth, then that truth is constructed from A itself. Consider for in-
stance the formulas p and ¬p (namely the literals). p is atomic thus has g-complexity 0, but 
does that mean that ¬p should count as having g-complexity 1? That would be justified if 
the truth ¬p (when it is a truth) was constructed from the truth p; but this is not the case 
in general, not least because when one of the formulas is a truth, the other is not. From the 
point of view of grounding, which deals solely in truths, there is no truth from which ¬p 
can be formally constructed, so, like p, it is atomic. Similar points hold for formulas of the 
form A, ¬A, where A is either a conjunction or a disjunction: the complexity of the latter 

5 We use multisets instead of sets to leave the door open to extending the work to grounding connec-
tives in non-classical logics.



https://doi.org/10.1387/theoria.21162 11

Towards a generalization of the logic of grounding

cannot be counted as one more than the complexity of the former, since it is not reducible 
to it. Therefore in the formula ¬A (where A does not itself start with a negation), the only 
g-complexity to count is that of A. This is precisely what Definition 3 does, by setting the 
complexity of A  B and ¬(A  B) on the same level.

The case of the double negation, however, is different. A formula like ¬¬A, if true, 
can be reduced to another, simpler truth, namely A. Moreover, such reduction is direct: 
there is no “intermediate” truth that one passes through to obtain the former from the 
latter. Thus, it makes sense to count the g-complexity of ¬¬A as equal to that of A plus 
one.

Let us now move to the key notion of being completely and immediately less g-complex. 
In order to define this notion, we first need to introduce other notions, namely that of 
converse of a formula, and the relations of a-c equivalence and ≅. (The notion of converse 
of a formula and the relation ≅ will be directly used to define the relation of “being com-
pletely and immediately less g-complex”; the relation of a-c equivalence serves to define the 
relation ≅).

Definition 4. Let D be a formula. The converse of D, written D*, is defined in the 
following way

 D* =  ¬n–1E, if D = ¬nE and n is odd
   ¬n+1E, if D = ¬nE and n is even

where the principal connective of E is not a negation, n ≥ 0 and 0 is taken to be an even 
number.6

Note that the advantage of working with the notion of converse of a formula A rather 
than with the negation of a formula A is that, while negation might increase the g-complex-
ity of A, the converse of A is a formula B which has the same g-complexity as A, whilst hav-
ing the opposite truth value than A just as the negation.

Definition 5. Consider a formula A. We will say that A is a-c equiv to B, if, and only 
if, A can be obtained from B by applications of associativity and commutativity of 
conjunction and disjunction.

Definition 6. For any two formulas A, B, A ≅ B if, and only if:

 A is a-c equiv to B or A is a-c equiv to B*

As extensively discussed in Poggiolesi (2016), two formulas A and B stand in the relation 
denoted by ≅ when they are about, or pertain to, or concern the same issue. The relation ≅ 
is thus analogous (though not equivalent) to the notion of factual equivalence discussed in 
Correia (2014, 2016).

Definition 7. Given a multiset of formulas M and a formula C of the classical lan-
guage c, we say that M is completely and immediately less g-complex than C, if, 
and only if:

 — C ≅ ¬¬B and M = {B} or M = {B*}, or
 — C ≅ (B  D) and M = {B, D}, or M = {B*, D}, or M = {B, D*}, or M = {B*, D*}.

6 Note that ¬0E is just E.
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The multiset7 M is completely and immediately less g-complex than the formula C since it 
contains all those ‘subformulas’8 of C which are such that the sum of their g-complexity is 
one less than that of C.

Definition 8. For any consistent multiset of formulas C ∪ M such that C and M are 
formulated in the classical language c, we say that, under the robust condition C 
(that may be empty), M completely and immediately formally grounds A, in sym-
bols [C] M |∼ A, if and only if:

 — M C A
 — C, ¬(M ) C ¬A
 —  C ∪ M is completely and immediately less g-complex than A in the sense of 

Definition 7

where ¬(M) := {¬B|B ∈ M}.

Under the robust condition C, the multiset M completely and immediately grounds A 
if, and only if, (i) A is derivable from M – positive derivability; (ii) A is derivable from –(M) 
plus C – negative derivability; (iii) C ∪ M is completely and immediately less g-complex 
than A.

As said in the Introduction, the goal of this paper is to use the approach developed by of 
Poggiolesi in order to give an adequate ground-analysis of the two connectives of exclusive dis-
junction and trivalent disjunction. But such an approach has been explicitly formulated for the 
classical connectives of negation, conjunction and disjunction. As an example, the relation of 
being completely and immediately less g-complex only concerns formulas built up from these 
connectives. Hence, in order for it to work for other connectives and still keep the spirit of 
the original one, we need to conservatively extend it, i.e. we need to generalize it in such a way 
that it works as it used to for the standard classical connectives but it also covers the new ones. 
Here it is the list of the reasonable moves to obtain a reasonable generalization.

1. We need to replace, in the main definition, classical derivability C by derivability 
in the logic where the new connectives are introduced.9 This is the easy step. We 
recall that the original definition in both Poggiolesi (2016) and Poggiolesi (2018) 
considers derivability (both positive and negative) to be formulated in axiomatic 
(Hilbert-style) proof-systems. Here, for the sake of simplicity, we will mainly em-
ploy (the deductively equivalent) natural deduction (ND) proof systems for deriv-
ability.

2. We need to find a suitable notion of variation, expressing the expected connection 
between the complete immediate grounds and the grounded in the logic where the 
new connectives are introduced.

3. We need to find a suitable g-complexity measure and related notion of being com-
pletely and immediately less g-complex which involve the new connectives under 
consideration.

7 We work with multisets rather than with sets since we need to keep track of the number of occur-
rences of each formula.

8 For the rigorous definition of subformula in a grounding framework see Poggiolesi (2016).
9 See also Poggiolesi (2020a).
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4. A logic with exclusive disjunction

The first connective we analyse is the exclusive disjunction, also called xor and denoted by 
⊕, and its negation. We will study this connective in the logic c

⊕ obtained by adding ⊕ to 
classical logic.

4.1. Defining the logic c
⊕

Definition 9. The language c
⊕ extends the language c thanks to the addition of the 

binary connective ⊕. Formulas are generated as usual by the operation

p | ¬A | A ∧ B | A ∨ B | A ⊕ B

A ¬B
A B

I1( ) ¬A B
A B

I2( )

A B A
¬B

E1( ) A B B
¬A

E2( ) A B ¬A
B

E3( ) A B ¬B
A

E4( )

Figure 1
ND for ⊕

Truth is defined by classical-like bivalent valuations v, assigning arbitrarily truth-values to 
atomic formulas and extended to standard compound formulas as usual, and to formulas 
such as A ⊕ B by

vA ⊕ B = t iff vA ≠ vB

That is, there are two possibilities for vA ⊕ B = t:

1. vA = t and vB = f
2. vA = f and vB = t

For derivability, we have the ND-system c
⊕ obtained by adding to the natural deduction 

calculus for classical logic the rules in Figure 1. We use M
 c A  to indicate derivability 

in c
⊕.

4.2. Complete immediate grounds in c
⊕

Let us start by considering the notion of g-complexity, but also the related relation of being 
completely and immediately less g-complex, in the framework of the logic c

⊕. Actually these 
notions are easily obtained by adapting the insights involved in the analysis of the stand-
ard connectives illustrated in the previous section to the new connective ⊕. Hence we have 
what follows.
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Definition 10. The g-complexity of a formula A ∈ c
⊕, gcm’(A), is defined in the fol-

lowing way:

 — gcm’(l) = 0,
 — gcm’(¬¬A) = 1 + gcm’(A),
 — gcm’(A  B) = gcm’(¬(A  B)) = 1 + gcm’(A) + gcm’(B)

where  = {∧, ∨, ⊕}.

Definition 11. Let D be a formula. The converse of D, written D*, is defined as in 
Definition 4 but covers the language c

⊕; this implies that we have the converse of 
A ⊕ B, namely (A ⊕ B)*, which corresponds to ¬(A ⊕ B).

Definition 12. Consider a formula A. We will say that A is a-c’ equiv to B, if, and 
only if, A can be obtained from B by applications of associativity and commuta-
tivity of conjunction, disjunction and exclusive disjunction.

Let us provide some examples of formulas that are a-c’ equiv. If A is of the form E ⊕  F, 
then the formula F ⊕  E is a-c’ equiv to it. To take another example, if A is of the form 
(B ⊕ C) ⊕ D, the formulas D ⊕ (B ⊕ C) and (D ⊕ C) ⊕ B are formulas a-c’ equiv to it.

Definition 13. For any two formulas A, B, A ≅’ B if, and only if:

 A is a-c’ equiv to B or A is a-c’ equiv to B*

Definition 14. Given a multiset of formulas M and a formula C of the language c
⊕, 

we say that M is completely and immediately less g-complex than C, if, and only 
if:

 — C ≅’ ¬¬B and M = {B} or M = {B*}, or
 — C ≅’ (B  D) and M = {B, D}, or M = {B*, D}, or M = {B, D*}, or M = {B*, D*}.

The relation of being completely and immediately less g-complex is very useful for the task 
of identifying the grounds of a certain formula, in this case the formulas of the form A ⊕ B 
which are the centre of our interest. Since, according the approach of Poggiolesi, the com-
plete and immediate grounds of A ⊕ B need to be completely and immediately less com-
plex than A ⊕ B, we know that the grounds for A ⊕ B necessarily consist of one of these 
four multisets {A, B} or {A*, B} or {A, B*} or {A*, B*}. This widely restricts the possibili-
ties. Let us now analyse each of these multisets. Still according to Poggiolesi’s approach, 
we know that the grounds and their conclusion need to be such that the latter is deriv-
able from the former. Of course now derivability is to be understood relative to the logic 
c

⊕. But then of the four multisets {A, B}, {A*, B}, {A, B*}, {A*, B*}, only two can serve as 
grounds, since neither from {A, B} nor from {A*, B*} the formula A ⊕ B is derivable accord-
ing to the rules of Figure 1. So we are left with {A*, B} and {A, B*}: from {A*, B}, thanks to 
the rule ⊕I1 and possibly some applications of the negation rule, and from {A, B*}, thanks 
to the rule ⊕I2 and possibly some applications of the negation rule, the formula A ⊕ B is 
derivable. Even at the intuitive level these multisets seem to be two good candidates. The 
exclusive disjunction is indeed true if, and only if, its components do not have the same 
truth value; hence, if we wonder why a formula like A ⊕ B is true, the natural answer is ei-
ther because A is true and B* is true, or because B is true and A* is true. Moreover each of 
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these grounds is complete because each gathers all truths that serve to explain A ⊕ B, and 
finally even the immediacy condition is satisfied since nothing can possibly lie in between 
{A*, B} or {A, B*} and A ⊕ B.

So far so god. But here is where the problem comes. According to Poggiolesi’s defi-
nition, for {A*, B} and {A, B*} to be the complete and immediate grounds of A ⊕ B, not 
only the relation of being completely and immediately less g-complex and positive deriv-
ability need to be satisfied, but negative derivability as well. In particular, by negating each 
ground and having an empty robust condition, the negative derivability clause would re-
quire:

1. ¬ A *( ),¬B
 c ¬ A B( )

2. ¬A ,¬ B *( )
 c ¬ A B( )

The problem is that neither 1 nor 2 hold and that therefore  {A, B*} and {A, B*} cannot be 
considered as the complete and immediate grounds of A ⊕ B, according to Poggiolesi’s ap-
proach. In front of this situation we have two options: either we stick with Poggiolesi’s 
original notion of negative derivability, we reject {A, B*} and {A, B*} as possible grounds of 
A ⊕ B and we try to change something in g-complexity and positive derivability in the at-
tempt of finding new grounds. Or we believe that the arguments and definitions provided 
so far for g-complexity and positive derivability are sound and that moreover even at the 
intuitive level  {A, B*} and {A, B*} seem to be ideal candidates for the complete and im-
mediate grounds of A ⊕ B, and that hence something needs to be changed in the original 
Poggio lesi’s notion of negative derivability. This second option looks more plausible and 
thus we will follow it in the rest of the section.

Let us remind the reader that the notion of negative derivability serves, in Poggiole-
si’s intentions, to formalize a notion of variation. However, the choice made in Poggio-
lesi (2016), to negate all of the grounds en bloc fits classical conjunction and disjunction, 
but it is a quite strong request. Indeed if we take M as a multiset of complete and imme-
diate grounds, in order to vary this multiset and check whether this variation affects the 
conclusion, it seems enough to vary at least one element of M by replacing it with its ne-
gation, or even better with its converse that it is an even more general requirement, and 
check that this variation passes through the conclusion. This small change already gives 
a modification of our original multiset of grounds and it might already affect the truth-
value of the grounded formula. So negative derivability can become a much more general 
request to find at least a variation of the multiset of grounds that affects the truth-value of 
the conclusion, i.e. it is such that from that variation we can derive that the converse of 
the grounded formula is true. This leaves the choice in Poggiolesi (2016) correct by be-
ing a special case of the generalization here, the special case where one chooses to vary all 
of the grounds.

Let us see the effect of such a change in our case-study. Let us focus on {A, B*} as being 
the complete and immediate grounds of A ⊕ B. There are two natural choices for varying 
this multiset of grounds.

1. Turn B* to (B*)*, namely to B. We then have that

A , B{ }
 c ¬ A B( )
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 The derivation is the following:

A B[ ]1 A
¬B

E1

B

¬ A B( )
¬ I 1

I

2. Turn A to A*. We then have that

A*, B{ }*
 c ¬ A B( )

 The derivation is the following10

A B[ ]1 A *
B

E3

B *

¬ A B( )
¬ I 1

I

So, indeed, there are two ways for the negative derivability to be satisfied and hence we can 
conclude that according to this new analysis {A, B*} is the complete and immediate ground 
of A ⊕ B. Note that an analogous analysis can be carried out for {A*, B} but is omitted.11

These observations not only have helped us to provide a grounding-analysis of the ex-
clusive disjunction, but have also led to a natural extension of Poggiolesi’s definition which 
we rigorously reformulate in the following way.

Definition 15. For any consistent multiset of formulas C ∪ M such that C and M 
are formulated in the language c

⊕, we say that, under the robust condition (that 
may be empty), completely and immediately formally grounds A, in symbols 
[C] M |∼ A, if and only if:

 
—

 
M

 c A ,

 —  for some non-empty (possibly non-proper) sub-multiset M’ of M we have that 
C, (M ’)*, M

 c (A)*, where (M ’)* := {B*|B ∈ M ’} and M– is the comple-
ment of M’,

 —  C ∪ M is completely and immediately less g-complex than A in the sense of 
Definition 21.

10 For the sake of simplicity, in the application of the rules E3 and ¬I we use A* instead of ¬A and B* in-
stead of ¬B. The eventual difference disappears thanks to the applications of the classical negation 
rules.

11 This analysis cannot be carried out for the multisets {A, B} and {A*, B*} since none of them satisfies 
positive derivability with A ⊕ B, although both multisets are completely and immediately less g-com-
plex than A ⊕ B.
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This new definition of complete and immediate grounding conservatively extends the one 
of Poggiolesi (2016): not only it is straightforward to check that it provides the same com-
plete and immediate grounds for double negation, conjunction and disjunction (as well as 
negation of conjunction and negation of disjunction), moreover it treats in an adequate 
way the new connective ⊕. The definition also correctly yields the complete and imme-
diate grounds for ¬(A ⊕  B). The complete and immediate grounds of ¬(A ⊕  B) are in-
deed either {A, B} or {A*, B*}. Let us analyse the relation between {A, B} and ¬(A ⊕ B), the 
one between {A*, B*} and ¬(A ⊕ B) is analogous. We have that from {A, B}, the formula 
¬(A ⊕ B) can be derived:

A B[ ]1 A
¬B

E
B

¬ A B( )
¬ I 1

I

hence positive derivability is satisfied. We also have that from {A*, B} —which is a possi-
ble variation of the multiset of grounds— the formula (¬(A ⊕ B))*, namely (A ⊕ B), can 
be derived. This is so by means of a simple application of the rule ⊕I1 or by means of an 
application of the rule ⊕I1 and the application of the classical rules of negation. There-
fore also negative derivability is satisfied. Finally, it is easy to check that the multiset 
{A, B} is completely and immediately less g-complex than ¬(A ⊕ B) according to Defini-
tion 21.

Let us end the section with the following important observation. We have analyzed 
the grounds of the exclusive disjunction, namely of the formulas of the form A ⊕ B and we 
have reached the conclusion that the complete and immediate grounds of such formulas 
are either the multiset  {A, B*} or the multiset {A*, B}. This is supported by the generalized 
version of Poggiolesi’s approach, but also by our intuitions. Let us for example consider the 
sentence “with four euros John either buys a sandwich or a drink” and suppose one asks for 
the reasons why this sentence is true. The natural answer is because “with four euros John 
buys a sandwich and John does not buy a drink”, or because “with four euros John buys a 
drink and John does not buy a sandwich”, which precisely coincide with the conclusion 
that we have drawn in this section, that therefore lay on a solid basis. However one could 
formulate the following perplexity in front of our conclusions. Consider the logic c

⊕ in 
which we have been working in this section. In c

⊕ it is possible to formulate the equiva-
lence between the formula A ⊕ B and the formula (A ∧ ¬B) ∨  (¬A ∧ B). However, ac-
cording to Definition 15, we have that:

— the complete and immediate grounds of A ⊕ B are {A, B*} or {A*, B}
— the complete and immediate grounds of (A ∧ ¬B) ∨ (¬A ∧ B) are either {A ∧ ¬B} 

under the robust condition (¬A ∧  B)*, or ¬A ∧  B under the robust condition 
(A ∧ ¬B)*.

Given that the two formulas are logically equivalent, shouldn’t the grounds of A ⊕  B be 
the same as the grounds of (A ∧ ¬B) ∨ (¬A ∧ B) and thus our conclusion be wrong? In 
order to dissipate this doubt, let us make the following remark. It is by now a widespread 
opinion (e.g. see Correia (2016); Krämer (2019)) that ground-theoretic equivalence, i.e. 
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the equivalence required to claim that the two formulas A ⊕ B and (A ∧ ¬B) ∨ (¬A ∧ B) 
have the same complete and immediate grounds, is more tine-grained than logical equiva-
lence. This is so because of the negation connective – A and ¬¬A are logically equivalent 
but it is not the case that they have the same complete and immediate grounds rather the 
former grounds the latter – and this is so also because of the number of occurrences of a 
connective or a subformula in a given formula to which grounding is sensitive, for exam-
ple A ∧ (B ∨ C) is logically equivalent to (A ∧ B) ∨ (A ∧ C) but they do not have the same 
grounds (e.g. see Krämer and Roski (2015)). In other words, in view of these examples that 
are commonly accepted in the literature, and because of the different structure displayed by 
the two formulas A ⊕ B and (A ∧ ¬B) ∨ (¬A ∧ B), it should not come as a surprise, rather 
it seems to confirm the granularity of the notion of ground-theoretic equivalence, the fact 
that A ⊕ B and (A ∧ ¬B) ∨ (¬A ∧ B), although logically equivalent, have different com-
plete and immediate grounds.

5. A logic with ternary disjunction

In this section we consider a classical-like ternary connective +(A, B, C), to be interpreted 
as a ternary disjunction. Namely, classically equivalent to (A ∨ B) ∨ C (or any of its ac - 
equiv formula), but considered primitive. We will study this connective in the logic c

⊕+ 
obtained by adding to the logic c

⊕ the ternary connective +.

5.1. Defining the logic c
⊕+

Definition 16. The language c
⊕+ extends the language c

⊕ thanks to the addition of 
the trivalent connective +. Formulas are generated as usual by the operation

p | ¬A | A ∧ B | A ∨ B | A ⊕ B | + (A, B, C)

Truth is defined by classical-like bivalent valuations v, assigning arbitrarily truth-values to 
atomic formulas and extended to standard compound formulas as usual, and to formulas 
such as +(A, B, C) by

v+(A, B, C) = t iff vA = t or vB = t or vC = t

For derivability, we have the ND-system c
⊕+ obtained by adding to the natural deduction 

calculus c
⊕ the rules in Figure 2. We use M

 +
c A  to indicate derivability in c

⊕+.
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A
+ A , B,C( )

+I1( ) B
+ A , B,C( )

+I2( ) C
+ A , B,C( )

+I 3( )

+ A , B,C( )

A[ ]i

D

B[ ] j

D

C[ ]k

D
D

+E i , j , k( )

Figure 2
ND for +

5.2. Complete immediate grounds in c
⊕+

As before, we start by considering the notion of g-complexity, but also the related rela-
tion of being completely and immediately less g-complex, in the framework of the logic 
c

⊕+. Once more these notions are easily obtained by adapting the insights involved in 
the analysis of the standard connectives to the trivalent disjunction. Hence we have 
what follows.

Definition 17. The g-complexity of a formula A ∈ c
⊕+, gcm”(A), is defined in the 

following way:

 — gcm”(l) = 0,
 — gcm”(¬¬A) = 1 + gcm”(A),
 — gcm”(A  B) = gcm”(¬(A  B)) = 1 + gcm”(A) + gcm”(B).
 — gcm” + (A, B, C) = gcm”(¬ + (A, B, C)) = 1 + gcm”(A) + gcm”(B) + gcm”(C).

where  = {∧, ∨, ⊕}.

Definition 18. Let D be a formula. The converse of D, written D*, is defined as in 
Definition 4 but covers the language c

⊕+; this implies that we have the converse 
of +(A, B, C), namely (+(A, B, C))*, which corresponds to ¬ + (A, B, C).

Definition 19. Consider a formula A. We will say that A is a-c-extend equiv to B, if, 
and only if, A can be obtained from B by applications of associativity and com-
mutativity of conjunction, disjunction and exclusive disjunction, or it can be ob-
tained by applications of the following laws:

 — +(A, B, C) ↔ +(A, C, B)
 — +(A, B, C) ↔ +(B, A, C)
 — +(A, B, C) ↔ +(C, A, B)
 — +(A, B, C) ↔ +(B, C, A)
 — +(A, B, C) ↔ +(C, B, A)
 — +(+(A, B, C), D, E) ↔ +(A, +(B, C, D), E)
 — +(+(A, B, C), D, E) ↔ +(A, B, +(C, D, E))
 — +(A, +(B, C, D), E) ↔ +(A, B, +(C, D, E))
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Definition 20. For any two formulas A, B ∈ c
⊕+, A ≅” B if, and only if:

 A is a-c-extend equiv to B or A is a-c-extend equiv to B*

Definition 21. Given a multiset of formulas M and a formula C of the language c
⊕+, 

we say that M is completely and immediately less g-complex than C, if, and only if:

 — C ≅” ¬¬B and M = {B} or M = {B*}, or
 —  C ≅” (B     D) and M = {B, D}, or M = {B*, D}, or M = {B, D*}, or 

M = {B*, D*}.
 —  C ≅” + (B, D, E) and M = {B, D, E}, or M = {B*, D, E}, or M = {B, D*, E}, or 

M = {B, D, E*}, or M = {B*, D*, E}, or M = {B, D*, E*}, or M = {B*, D, E*}, or 
M = {B*, D*, E*}.

The considerations involved in the determination of the complete and immediate grounds 
of formulas of the form +(A, B, C) are quite similar to those involved in the complete and 
immediate grounds of the binary classical disjunction. But precisely because of this similar-
ity, a new possibility naturally emerges, namely that more than just one robust condition 
is needed for getting the complete immediate grounds of classical formulas. Consider the 
sentence “Ann will watch a Tarantino’s movie or a Scorsese’s movie or a Lynch’s movie.” 
In case Ann will watch the three, then the three sentences “Ann will watch a Taranti-
no’s movie,” “Ann will watch a Scorsese’s movie” and “Ann will watch a Lynch’s movie” 
will be the complete and immediate grounds. The second possibility is that Ann watches 
two movies out of three, say Tarantino and Scorsese, and then we have that under the ro-
bust condition that “Ann will not watch a Lynch’s movie,” “Ann will watch a Tarantino’s 
movie” and “Ann will watch a Scorsese’s movie” are the complete and immediate grounds 
of the sentence “Ann will watch a Tarantino’s movie or a Scorsese’s movie or a Lynch’s 
movie.” There exists a third possibility according to which Ann watches only one movie 
out of three, say Tarantino, and in this case we need to have that under the two robust con-
ditions that “Ann will not watch a Lynch’s movie” and “Ann will not watch a Scorsese’s 
movie,” “Ann will watch a Tarantino’s movie” is the complete and immediate grounding of 
“Ann will watch a Tarantino’s movie or a Scorsese’s movie or a Lynch’s movie.” This corre-
sponds to the fact that formulas of the form +(A, B, C) not only will have as complete and 
immediate grounds the multiset {A, B} under the robust condition C*, but also the set {A} 
under the robust condition B* and C*.

These observations not only have helped us to provide a grounding-analysis of the ter-
nary disjunction, but have also led to a natural extension of Poggiolesi’s definition which 
we rigorously reformulate in the following way.

Definition 22. For any consistent multiset of formulas N ∪ M such that N and M 
are formulated in the language c

⊕+, we say that, under the robust conditions N 
(that may be empty), M completely and immediately formally grounds A, in sym-
bols [N] M |∼ A, if and only if:

 
—

 
M

 +
c A ,

 —  for some non-empty (possibly non-proper) sub-multiset M’ of M we have that 
N, (M ’)*, M

 +
c (A*),  where (M ’)* := {B*|B ∈ M ’} and M– is the comple-

ment of M’,
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 —  N ∪ M is completely and immediately less g-complex than A in the sense of 
Definition 21.

This new definition of complete and immediate grounding conservatively extends Defini-
tion 15: not only it is straightforward to check that it provides the same complete and im-
mediate grounds for double negation, conjunction, disjunction and exclusive disjunction 
(as well as the negation of each of these last three connectives), moreover it treats in an ad-
equate way the new connective +. The complete and immediate grounds of +(A, B, C) that 
emerge from Definition 15 are:

— {A, B, C}
— {A, B} under the robust condition C*
— {B, C} under the robust condition A*
— {A, C} under the robust condition B*
— {A} under the robust conditions B*, C*
— {B} under the robust conditions A*, C*
— {C} under the robust conditions A*, B*

Let us consider in detail one of these cases, namely the one where A is the complete and im-
mediate ground under the robust conditions {B*, C*}. We have that from A one can derive 
+(A, B, C) by means of one application of the rule +I1 so that positive derivability is satis-
fied. Negative derivability is also satisfied since we have

+ A , B,C( )[ ]1
A[ ]2 , A *

I
B[ ]3 , B *

I
C[ ]4 ,C *

I

¬+ A , B,C( )
¬ I1

+ E2 ,3 ,4

Finally it is easy to verify that the multiset {A, B*, C*} is completely and immediately less g-
complex than +(A, B, C) according to Definition 21.

Note that Definition 15 helps us to correctly identify the complete and immediate 
grounds of formulas of the form + (A, B, C); it is the multiset {A*, B*, C*} which satisfies 
together with formulas of the form ¬+(A, B, C) positive and negative derivability plus g-
complexity. Note also that in case +(A, B, C) has the form +(p, q, +(r, s, t)) and its grounds 
is the multiset, say, {p, q, +(r, s, t)}, then the multiset {p, q,  (r, s, t)} is also the complete and 
immediate ground of the following formulas +(+(p, q, r), s, t), + (p, +(q, r, s), t), but also 
+(q, +(p, r, s), t), +(q, +(p, t, s), r), +(p, +(r, t, s), q) and so on.

It is interesting to underline that in natural language not only do we have ternary dis-
junctions, but also n-ary disjunctions (e.g. see Francez (2019)). The complete and imme-
diate grounds of n-ary disjunction will be analogous to those of the ternary disjunction, 
and they will be obtained by straightforwardly generalizing the key-notions of this section 
—namely g-complexity, converse, a-c equivalence, completely and immediately less g-com-
plex— to the n-ary case.

Finally a brief observation on the links between logical equivalence and ground-the-
oretic equivalence. Note that although the two formulas +(A, B, C) and A ∨  (B ∨  C) 
are logically equivalent and have the same complete and mediate grounds, they are not 
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ground-theoretically-equivalent, namely they do not have the same complete and immedi-
ate grounds. This is so because the connective + is assumed as primitive in the language and 
thus it represents a basic ternary choice that does not need to pass through a double dis-
junction to be explained.

6. Discussion

Motivated by the belief that the formal theories of grounding are of intrinsic interest and 
can and should be studied from a logical perspective, the aim of this paper has been to en-
rich their applicability, and use them to get a grounding analysis for two non-standard con-
nectives, namely the exclusive or and the ternary or. We have developed this analysis draw-
ing on Poggiolesi’s approach, which is based on the notions of derivability and complexity. 
Our first result is the rigorous identification of the complete and immediate grounds for 
the connectives ⊕ and +. Let us emphasize the importance of this result from a concep-
tual perspective.12 First of all, one could object against the utility of our study: since both 
the connectives ⊕ and + are definable in terms of the other classical connectives, one could 
attempt to obtain the grounds of ⊕ and + simply from the grounds of these latter. For 
example, given that A ⊕  B is logically equivalent to, and hence definable as, the formula 
(A ∧ ¬B) ∨ (¬A ∧ B), one proposal could be to take its complete and immediate grounds 
to just be those of (A ∧ ¬B) ∨ (¬A ∧ B). This kind of reasoning, although common, de-
pends on the assumption that ground-theoretic equivalence is the same as logical equiva-
lence. However, as our intuitions suggest, and as has emerged from other recent analysis, 
e.g. see Correia (2016), ground-theoretic equivalence is not the same as logical equivalence. 
Rather, it is a much more fine-grained hyperintensional notion (e.g. see Leitgeb (2019)) 
that is sensitive to the structure of the formula, i.e. to the number as well as the order of the 
connectives that occur in a formula. Our study is fully coherent with these findings, inso-
far as it treats the two previously unstudied connectives as primitive, rather than as defined 
from others, and brings out important ground-theoretic differences.

Secondly, this paper extends Poggiolesi’s approach to previously unconsidered con-
nectives, and generalizes her characterization of the notion of complete and immediate 
grounding – on the one hand, by introducing a wider notion of variation, on the other 
hand, by allowing several robust conditions. It thus shows that Poggiolesi’s method copes 
well with two new connectives, as well as suggesting that the method is well-positioned for 
accurate analysis of other grounding cases not considered to date.

Extendability is an important property of any formal model of a philosophic notion, 
on at least two fronts. One centers on future formal development. In the current case, it 
can be an argument for convincing logicians to take an interest in grounding as a new and 
fertile area of research, for instance. The analysis of the notion of grounding is currently 
central in philosophy, but attracts little interest from a logical perspective. However, as the 
case of modality has shown —a metaphysical notion that has given rise to one of the most 
central contemporary domains of (philosophical) logic— interest and input from logicians 
has both enriched the study of modal logics and provided a fruitful feedback into philo-

12 We take it to be evident its interest from a technical perspective.
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sophical debate on modality. The other is purely philosophical: an extendable account of 
grounding has a strong claim to capturing the structure of the notion itself. For instance, 
we mentioned previously the purported contrast between metaphysical and logical ground-
ing, and the debates about where the boundary between them lies, or whether one or the 
other even exists (see for instance Hofweber (2009) or Merlo (2020)), some of which spe-
cifically discuss classic disjunction. The development in this paper of a single framework 
that covers a range of connectives suggests that it may seize characteristics of grounding 
that are independent of the specitic type of grounding involved, and in this sense is perhaps 
“deeper” than the contrast between metaphysical and logical grounding, for instance. It 
may be that the connectives used here have impacts in the context of this debate - we leave 
this as a topic for future research.

7. Conclusions

In this article we have considered two different types of disjunction, namely exclusive dis-
junction as well as trivalent disjunction, and we have applied Poggiolesi’s method to obtain 
a grounding analysis of both of them. We have underlined the technical as well as the con-
ceptual advantages of this operation. We thus hope that this paper can be taken as a first 
step towards a systematic grounding analysis of several new —classical but also non-classi-
cal— connectives that may result in a wide grounding framework that has an interest not 
only for its philosophical roots but also for its formal features.
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