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The fate of causal structure under time reversal

El destino de la estructura causal bajo inversiones temporales

Porter Williams*
Department of Philosophy, University of Southern California

ABSTRACT:  What happens to the causal structure of a world when time is reversed? At first glance it 
seems there are two possible answers: the causal relations are reversed, or they are not. I argue that neither 
of these answers is correct: we should either deny that time-reversed worlds have causal relations at all, or 
deny that causal concepts developed in the actual world are reliable guides to the causal structure of time-
reversed worlds. The first option is motivated by the instability under intervention of time-reversed dy-
namical evolutions. The second option is motivated by a recognition of how contingent structural featu-
res of the actual world shape, and license the application of, our causal concepts and reasoning strategies.

KEYWORDS:  causality, causal structure; reversed time; causal concepts; intervention.

RESUMEN:  ¿Qué sucede con la estructura causal de un mundo cuando se invierte el tiempo? A primera 
vista parece que hay dos posibles respuestas: o bien las relaciones causales se invierten, o bien  no lo hacen. De-
fiendo que ninguna de estas respuestas es correcta: debemos o bien negar que los mundos con tiempo invertido 
tengan relaciones causales, o bien negar que los conceptos causales desarrollados en el mundo actual sean guías 
fiables para analizar la estructura causal de mundos con tiempo invertido. La primera opción está motivada 
por la inestabilidad bajo intervenciones de las evoluciones dinámicas con tiempo invertido. La segunda opción 
está motivada por el reconocimiento de cómo aspectos estructurales contingentes del mundo actual dan forma 
a, y legitiman la aplicación de, nuestros conceptos causales y estrategias inferenciales.

PALABRAS CLAVE:  causalidad; estructura causal; inversión temporal; conceptos causales; intervención.
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1.  Introduction

Bertrand Russell famously declared that causal notions in fundamental physics were a “relic 
of a bygone age” (Russell, 1912). His most influential argument for this conclusion in-
voked the time-symmetric character of dynamical evolution in fundamental physics and 
has come to be called the Directionality Argument. The argument, in short, begins with 
the claim that the relationship between cause and effect is asymmetric in ways that can-
not be grounded in time-symmetric dynamical laws. Since the dynamical laws of funda-
mental physics are time-symmetric, they cannot satisfactorily distinguish cause from effect: 
if A → B in one temporal direction, then B → A in the other temporal direction. Russell 
concludes that fundamental physical theories cannot ground causal relations.

Russell is far from alone in believing that reversing temporal order also reverses causal 
order. Of course, anyone who concludes with Russell that the Directionality Argument 
shows that causal relations cannot be grounded in fundamental physical theories certainly 
believes it. Even those who explicitly reject the conclusion of the Directionality Argu-
ment believe it on other grounds. For example, any advocate of transference theories, like 
(Salmon, 1984, 1994) or (Dowe, 2000), will certainly believe that reversing time reverses 
causal relations: a causal interaction between A and B just is the transfer of a conserved 
quantity, like energy-momentum, from A to B. The time-reverse of that dynamical evolu-
tion, of course, will involve the transfer of energy-momentum from B to A.

In a similar vein (Ney, 2009), explicitly endorses an account of “physical causation” 
that is just nomological determination—a temporally symmetric notion—and embraces 
the fact that

... if the universe does not have any fundamental, built-in temporal asymmetries, this seems 
to be what we are left with. There is still causation, because there is still physical determination. 
But the distinction between what is the cause and what is the effect may not be fundamental. 
(Ney, 2009, pp. 752-3)

Meanwhile (Price, 2007) endorses a quite different account of causation—a perspectival 
account according to which causal asymmetries are determined by our psychological per-
spective as deliberators—but motivates it by stating that if there were a region of the uni-
verse in which entropy was decreasing, “intelligent creatures would have a time-sense re-
versed relative to ours... For them, the causal arrow runs directly counter to the way it runs 
for us” (Price, 2007, p. 273). Indeed, Price thinks that his belief that causal order will be 
reversed in time-reversed worlds, combined with the time-symmetric character of the dy-
namical laws of fundamental physics, “provides something close to a trump card for per-
spectivalism” (Price, 2007, p. 269).1

And (Tooley, 1990, section 3.1.2) seems to think that any account of causation accord-
ing to which causal relations supervene on non-causal facts and relations is committed to 
accepting that reversing temporal order will also reverse causal order.

1	 Price makes an important assumption about an anti-entropic universe: that such a universe does not 
require any more fine-tuning than an entropic one. As he says, “at least in the absence of any time-
symmetry in the underlying physics, a fine-tuning required is the same in either temporal direction” 
(Price, 2007, p. 273). I think this assumption is false, as I will discuss in section 2.
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I think this is mistaken: worlds with reversed temporal order should not be thought of 
as exhibiting reversed causal relations. To this extent I agree with (Farr, 2020). Farr points 
out that if causal relations in one temporal direction satisfy standard statistical desiderata, 
like the Causal Markov Condition, they will generally not satisfy those criteria in the re-
versed temporal order. On the basis of these asymmetries of statistical independence, he 
concludes that the causal structure of a world is invariant under time reversal:

The issues of agency and the [Causal Markov Condition] lead to the same judgements about 
causal direction regardless of what one takes to be the underlying direction of time. This en-
tails that any underlying time-reversal invariance of the microphysical description is beside the 
point; one may hold that there is a clear causal direction ... which is invariant under time reversal. 
(Farr, 2020, p. 197)

However, here I part ways with Farr as well: I do not think that reversing temporal order 
should be thought of as leaving causal ordering invariant. Instead, I think that the correct 
attitude is one of the following:

1.	 There are no causal relations at all in time-reversed worlds.
2.	 We have no epistemic warrant for judging that our concepts of causation are reli-

able guides to the nature, and presence, of causal relations in time-reversed worlds.

The two answers differ primarily in epistemic audacity. If we are audacious enough to ap-
ply to time-reversed worlds the concepts and strategies for causal reasoning that we have 
developed to help us navigate the actual world, then we should conclude that there are no 
causal relations at all in such worlds. Alternatively, upon recognizing how thoroughly for-
eign to us a time-reversed world is, we might decide that our actual-world standards for 
judging the nature and presence of causal relations are inapplicable. Ultimately, I think this 
second answer is the more plausible one: epistemic humility demands that we simply with-
hold judgment about the presence or absence of causal relations in time-reversed worlds, in 
light of the restricted scope of our frameworks for causal reasoning.

2.  Reversing time

As (Farr & Reutlinger, 2013) have pointed out, the phrase “time-symmetric character” that ap-
pears in the Directionality Argument is ambiguous and can be precisified in two distinct ways:2

1.	 Invertibility: Given a state of the system (t), the dynamics τ of the physical the-
ory determine both the state (t + τ) and the state (t − τ).

2.	 Time-Reversibility: Given a sequence of states of the system (t1), ..., (tn) related 
by the dynamics tn

 and a time-reversal operator , the time-reversed sequence of 
states (−tn), ..., (−t1) is also related by the dynamics D−tn

.

Both (Earman, 2002) and (Farr & Reutlinger, 2013) see Invertibility as the more fundamen-
tal sense in which the dynamics of a theory can exhibit a“time-symmetric character”: Ear-

2	 A similar distinction was pointed out by (Earman, 2002), but was not applied to the Directionality Ar-
gument.



Porter Williams

90� Theoria, 2022, 37/1,  87-102

man because any classical or quantum system admitting a Hamiltonian formulation will 
satisfy Invertibility even if it doesn’t satisfy Time-Reversibility, and Farr and Ruetlinger be-
cause one can understand the two dynamically allowed sequences of states secured by Time-
Reversibility to be occurring in the same temporal direction.3 I won’t make much of the dis-
tinction: in my discussion below I will assume that both conditions are always satisfied. As is 
evident from the statement of Time-Reversibility, I will also adopt the standard interpreta-
tion of time reversal according to which time reversal includes a (perhaps non-trivial) opera-
tion on the state of a system in addition to changing the sign of the time coordinate.4

I will also assume that the dynamics of the theory are deterministic. This is sufficient to 
account for all “fundamental” dynamical evolutions of classical mechanics and for unitary 
evolution in quantum theories. For simplicity I will stick to the context of classical statisti-
cal mechanics, but see (Williams, 2022) for discussion of how some of the themes here ap-
ply to quantum states related by unitary dynamical evolution.

Consider a classical description of the behavior of an N-particle system whose dynami-
cal evolution is governed by a Hamiltonian . This system could be anything: a gas in a 
box, a basset hound, the City of Pasadena, the entirety of the Pacific Ocean, or the observ-
able universe as a whole. In all of those cases, the microstate (t) of the system is determined 
by specifying the position and momentum of each particle:

(t) = (q1(t), p1(t), ..., qN (t), pN (t))

Dynamical evolutions of this system trace out continuous curves connecting different 
microstates (t1), ..., (tn) of the system. The space of all possible microstates of this system 
is called the phase space of the system.

We would also like to describe thermodynamic properties of the system. Roughly 
speaking, one accomplishes this by partitioning the phase space of the system into sets of 
microstates; we call these sets macrostates. All of the microstates contained in a particular 
macrostate describe a system that exhibits the same values for some set of specified thermo-
dynamic properties like temperature, pressure, total magnetization, etc. It is the values of 
these thermodynamic properties that define the different macrostates. We can then assign 
an entropy to the system: the value of the entropy of the system at any instant is a function 
of the thermodynamic properties of the system at that instant. More precisely, the entropy 
assigned to a system at an instant is determined by the volume of phase space occupied by 
the macrostate in which the microstate (t) of the system lies at that instant.5

3	 Farr and Ruetlinger draw on the same point made earlier by (Maudlin, 2007, chapter 4.2).
4	 A referee wanted justification for this. The appropriate understanding of time reversal has received 

a lot of philosophical attention in recent years (Albert, 2000; Callender, 2000; Earman, 2002; Mala-
ment, 2004; Arntzenius & Greaves, 2009; Roberts, 2017; Allori, 2019; Farr, 2020; Donoghue & Men-
ezes, 2019, 2020; Callender, 2020; Struyve, 2020). The initial stimulation for much of this work were 
the arguments for a non-standard definition of time reversal by (Albert, 2000) and (Callender, 2000). 
For reasons compactly summarized in (Roberts, 2019), I remain partial to the traditional account and 
will adopt it throughout this paper.

5	 By entropy here I mean Boltzmann entropy. Nothing in the paper depends on this choice. For an il-
luminating and thorough discussion of entropies in classical and quantum mechanics, see (Goldstein 
et al., 2020).
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It has been known since the time of Boltzmann that the entropy of closed systems is over-
whelmingly likely to increase over the course of their dynamical evolution: for essentially any 
Hamiltonian , essentially any non-equilibrium microstate (t) will evolve to a later micro-
state (t + τ) of higher entropy. However, since Boltzmann’s time it has also been known 
that for essentially any Hamiltonian , essentially any non-equilibrium microstate (t) will 
also evolve to an earlier microstate (t − τ) of higher entropy: as (Albert, 2000, p. 77) puts it, 
“the overwhelming majority of the trajectories passing through any particular non-maximal-
entropy [macrostate] must just then be in the process of turning around.” This is troubling: 
the claim that essentially any non-equilibrium microstate (t) represents a local entropy min-
imum along essentially every dynamical trajectory that passes through it conflicts directly 
with our memories of the past: isolated gases were not warmer in the past than they are in the 
present, my eggs were not more scrambled, my hair (sadly) not less grey, and so on.

However, “essentially any microstate” does not mean “every microstate”: included in 
the set of microstates that make up any macrostate, there will be a subset of microstates 
ab(t) that, under the influence of , evolve to higher entropy states in one temporal direc-
tion and to lower entropy states in the other temporal direction. This subset of “abnormal” 
microstates states ab(t) inhabits a fantastically miniscule portion of the phase space vol-
ume occupied by the macrostate in question. Furthermore, this miniscule volume is itself 
scattered in tiny, geometrically non-uniform clusters and filaments throughout the volume 
of phase space associated with the macrostate in question; see Figure 1. Given their sparse-
ness, it would seem fantastically unlikely that the present state of the actual world is such a 
state; nevertheless, all evidence indicates that it is. Providing an account of the foundations 
of statistical mechanics according to which such a history of the world is not fantastically 
unlikely, but in fact highly probable, has generated a host of conceptual difficulties in the 
foundations of statistical mechanics (Sklar, 1993; Albert, 2000; Uffink, 2007).

Figure 1
The set of abnormal microstates ab distributed throughout a macrostate.  

(Not drawn even close to scale.)

However one secures such an account, the result is that the universe as a whole—and 
essentially any closed system within that universe—dynamically evolves from microstates 
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of lower entropy to microstates of higher entropy. Call worlds like this entropic. The actual 
world is entropic. The time-reverse of an entropic world is a world in which microstates of 
higher entropy dynamically evolve into microstates of lower entropy. Call worlds like this 
anti-entropic. The time-reverse of the dynamical history of any entropic world corresponds 
to the dynamical history of an anti-entropic world.

A characteristic feature of entropic worlds is that their identity as entropic worlds is 
very stable. Suppose that any physical system, up to and including the universe as a whole, 
is in a particular non-equilibrium microstate (t) that will evolve, under the influence of 
the Hamiltonian , into a microstate (t + τ) of higher entropy. As stated above, essen-
tially any alternative microstate ’(t) that lies in the same non-equilibrium macrostate as 
(t) will also evolve, under the influence of the same Hamiltonian , into a microstate 
’(t + τ) of higher entropy. No particular coordination, or fine-tuning, of the microstate to 
the particular Hamiltonian  is required to secure entropic dynamical evolution.

It is worth lingering on this point for a moment because elucidating the type of fine-
tuning that is, and is not, required to secure entropic dynamical evolution brings out an 
important difference between entropic and anti-entropic worlds.6 Many proposals for en-
suring that our world lies on a dynamical trajectory along which low entropy microstates 
evolve into high entropy microstates posulate something like the Past Hypothesis: that the 
initial microstate of the universe had very low entropy (Feynman, 1965, chapter 5; Albert, 
2000; Wallace, 2011). Macrostates with low entropy occupy a small volume of the phase 
space of any physical system and the universe itself is no exception, so these proposals re-
quire a certain type of fine-tuning: the initial state of the universe had to be “special” in 
the sense that it had to be selected from a small volume of phase space. But that’s it: to en-
sure entropic dynamical evolution, there is no need to choose a particular microstate that 
is fine-tuned to the particular Hamiltonian governing the system. In fact, the specific form 
of the dynamics isn’t all that important: the set of microstates that occupy the low-entropy 
macrostate for the Hamiltonian  will be essentially the same for a reasonably large neigh-
borhood of different Hamiltonians ’.

In anti-entropic worlds, the situation is importantly different. A characteristic feature 
of anti-entropic worlds is that their identity as anti-entropic worlds is extremely fragile. 
The anti-entropic dynamical evolution of a physical system requires a fantastically precise 
dynamical coordination between the constituent particles of the system: all the particles 
in my kitchen coordinate to unscramble eggs and launch them back into their shells, the 
particles in my coffee and mug and local environment cooperate to unmix my coffee and 
cream, stomach acids conspire to reassemble digested foodstuffs, and so on. If even a few 
particles fail to play their role, the anti-entropic dynamical evolution falls apart. A few dis-
placed molecules in my frying pan collide with, and disrupt, the carefully coordinated tra-
jectories of other molecules, those molecules fail to displace the appropriate molecules in 
my scrambled eggs and/or the surrounding air molecules, and so on.7

6	 Much of my discussion about the differences in fine-tuning is indebted to (Maudlin, 2007, chap-
ter 4.4).

7	 Similar observations about the fragility of anti-entropic evolution are invoked by (Elga, 2001) to pre-
sent a problem for David Lewis’s account of the asymmetry of counterfactual dependence. See, in par-
ticular, Elga’s description of the anti-entropic dynamical evolution of a fried egg.
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We can be slightly more precise about this. If a microstate (t) lies on a dynamical tra-
jectory along which high entropy microstates evolve into low entropy microstates, then es-
sentially any microstate (t) obtained as a small perturbation of (t) will not lie along such 
a dynamical trajectory. That is, if a microstate (t) is in the set ab(t) of “abnormal” micro-
states that undergo anti-entropic dynamical evolution under the influence of a particular 
Hamiltonian , then the fact that ab(t) occupies such a fantastically tiny, and scattered, 
volume within any macrostate means that small perturbations of (t) will almost certainly 
not be in the set ab(t). For example, if the microstate

(t) = (q1(t), p1(t), ..., qN(t), pN(t))

lies in the macrostate Γ and the subset ab(t) of “abnormal” microstates, then the micro-
state (t) that results from a small perturbation of the positions and/or momenta of some 
subset of the particles

(t) = (q1(t), p1(t), ..., qi(t) + , pi(t) + , ..., qm(t) + , pm(t) + , ..., qN(t), pN(t))

will still lie in the macrostate Γ but will not lie in ab(t). This means that, evolving under 
the influence of the Hamiltonian , the perturbed microstate (t) will generate an en-
tropic dynamical evolution. This is one sense in which anti-entropic worlds are fragile: at 
any instant t, small perturbations of the microstate of that world will transform it into an 
entropic world, i.e. shift it onto a dynamical trajectory along which low entropy micro-
states evolve into higher entropy microstates.8 I will return to this in section 3.

There is a second type of fine-tuning required in anti-entropic worlds: the microstate 
generating the anti-entropic evolution has to be delicately tuned to the particular Hamilto-
nian  that determines that dynamical evolution of the system. Physically, this is because 
the coordination between all of the particles of a system required for an anti-entropic dy-
namical evolution depends extremely sensitively on the particular Hamiltonian governing 
the system. If a microstate (t) would generate an anti-entropic evolution under the influ-
ence of , then that same microstate will generate an entropic evolution under the influ-
ence of the Hamiltonian  obtained from  by some tiny modifications—for example, to 
the range or strength of interactions. Those modifications will (among other things) result 
in slightly different scattering angles from particle interactions which, in turn, will disrupt 
the careful coordination of particles secured by  and progressively wipe out the delicate 
correlations that are needed between all of the particles at every instant t to generate anti-
entropic dynamical evolution. Formally, it is because the meaning of “abnormal” in the def-
inition of the set of abnormal microstates ab(t) is dynamical abnormality: it is the set of 
microstates that undergo abnormal dynamical evolution, i.e. evolve from higher entropy 
microstates to lower entropy microstates. Modifying the Hamiltonian thus completely re-
defines the set of “abnormal” states ab(t).9

8	 This fact is exploited in (Albert, 2000, chapter 9) to argue that if a spontaneous collapse theory like 
GRW is the correct description of quantum behavior, then anti-entropic dynamical evolution is es-
sentially impossible: the spontaneous localizations will take any state initially in the set ab(t) and very 
rapidly perturb it into a state that lies outside that set.

9	 The same point is made by (Maudlin, 2007, p. 132-33).
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The fine-tuning in an anti-entropic world is different not only in degree, but also in 
kind, from the fine-tuning in entropic worlds associated with proposals like the Past Hy-
pothesis. In entropic worlds one can randomly pick a microstate from a low-entropy mac-
rostate without knowing much at all about the particular Hamiltonian  determining the 
system’s dynamical evolution, then show that those dynamics will evolve that low-entropy 
microstate into a high-entropy microstate. The initial microstate is “special” in the sense 
that it comes from a macrostate that occupies a small volume in the system’s phase space, 
but securing entropic dynamical evolution does not additionally require that “special” 
microstate to contain strong correlations between the positions and/or momenta of parti-
cles with no antecedent causal connection, nor does picking a “special” microstate that will 
generate entropic dynamical evolution depend sensitively on the details of a particular . 
In the terminology of (Woodward, 2022), both Causal to Statistical Independence (CSI) 
and Variable/Relationship Independence (VRI) are satisfied in entropic worlds. In anti-
entropic worlds, this is no longer true: the initial microstate describes strong correlations 
between the positions and/or momenta of particles with no antecedent causal connection, 
and those correlations must be very precisely tailored to the particular Hamiltonian  de-
termining the dynamical evolution of the system. In other words, both CSI and VRI fail in 
anti-entropic worlds.

3.  Causation reversal?

What does any of this have to do with time reversal and causal ordering? The answer, in 
short, is that according to any difference-making account of causation—any account on 
which causal claims entail a claim about how an effect would be altered by local alterations 
of the cause—there are no causal relations in anti-entropic worlds. This includes interven-
tionst accounts of causation, accounts of causation according to which causal claims reduce 
to (or non-reductively entail) claims about counterfactual dependence, and so on. If causa-
tion is a difference-making relation then inverting the temporal ordering of the states of an 
entropic world does not result in a world with inverted causal relations: it results in a world 
with no causal relations at all.

More precisely, the following two claims are inconsistent:

1.	 At least some causal claims, like temperature causes pressure or smoking causes lung 
cancer, are meaningful in world ω.

2.	 Closed systems in ω (including ω itself) dynamically evolve from states of higher 
entropy to states of lower entropy.

The argument for the inconsistency is simple, but first recall a couple elementary features 
of interventionist accounts of causation.10 Claims like temperature causes pressure mean 
“there is some intervention that can be performed on the temperature of a physical system 
that is systematically correlated with a change in the pressure of that system.” And to inter-
vene on a variable  is to bring that variable, and that variable alone, under the total control 

10	 I will adopt interventionist language from here on out, but the argument would go through just as well 
with any other difference-making account.
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(or partial control, if one considers soft interventions) of the investigator while holding all 
other variables fixed. If there is no act one can perform—even in principle—to change the 
value of  without that act, and not the resulting change in , also changing the value of a 
distinct variable , then one cannot intervene on . For example, if there was no act that 
one could perform to change the net magnetization of an iron bar that didn’t also change 
its temperature, or the air temperature in the lab as a whole, or the net magnetization of the 
iron bar in the lab down the hall, or ... then, in such a world, one could not intervene on the 
net magnetization of an iron bar.11

Here, then, is the argument that (1) and (2) are inconsistent. We know from the dis-
cussion in section 2 that anti-entropic dynamical trajectories are extremely fragile: if a 
microstate (t) generates an anti-entropic dynamical trajectory under the influence of a 
Hamiltonian , then states (t) obtained by tiny perturbations of (t) almost surely will 
not. I want to emphasize that by “tiny perturbations” I mean perturbations that are com-
pletely physically unnatural, let alone attainable: changing by a negligible amount the posi-
tions and/or momenta of a few random particles in large system, like a dilute gas, a frying 
pan, a few cells in a human body, downtown Los Angeles, and so on. Such interventions 
would require controlling the state of every particle in the system to a physically unattain-
able degree of precision, but that’s not really the issue. Even if they were physically attain-
able, there is no way to know which few particles in the system, if any, one could subject to 
such a tiny perturbation at a given instant without disrupting the anti-entropic dynami-
cal evolution: that is, without perturbing the system in the state (t) into a state (t) that 
lies outside any of the tiny, geometrically non-uniform regions of phase space that make up 
ab(t). And even if one could know, and could perform such a precise intervention, these 
would not be interventions on anything remotely like meaningful physical properties of a 
system: there is no physically interesting property corresponding to the small and scattered 
collection of particles in downtown Los Angeles that one could minimally perturb without 
disrupting the anti-entropic dynamical evolution of the city as a whole.

Genuine collective physical properties, like a nucleotide sequence in an mRNA mole-
cule, the temperature of an iron bar, or the amount of cigarette tar in one’s lungs, are associ-
ated with the positions and/or momenta of enormous numbers of individual particles. And 
interventions on those propeties, like mRNA editing, lowering the temperature of an iron 
bar, or smoking one pack a day rather than two, involve large changes in the positions and 
momenta of enormous numbers of particles. Those kinds of interventions will inescapably 
take a state (t) that lies in ab(t) and produce a state that lies outside of ab(t)—a state that 
will produce an entropic dynamical evolution under the influence of . Local interventions 
on physical systems cannot be performed without transforming an anti-entropic world into 
an entropic one.12

11	 Of course, in the real world one can intervene on the net magnetization of an iron bar precisely by 
changing its temperature: cool it below its critical temperature. This brings out the difference nicely: 
one is acting to intervene on the temperature of the bar and it is the change in the temperature that 
brings about a change in its net magnetization. It is not whichever specific action one took to lower the 
temperature that itself brought about the change in net magnetization in the iron bar.

12	 The qualifier “local” is important. One could perform interventions on (t) while maintaining anti-
entropic dynamical evolution, but those “interventions” would have to be spectacularly non-local. 
Such an intervention would have to instantaneously alter the positions and/or momenta of particles 
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It may seem incredible that that such small interventions can end up reversing the 
entropy gradient of the universe, i.e. turning an anti-entropic world into an entropic 
world. It is clarifying to think about the physical process by which this transformation 
happens. Suppose that the microstate of the universe is (t) and that this microstate, un-
der the influence of a Hamiltonian , will generate anti-entropic dynamical evolution. 
Among the countless physical states of affairs described by the microstate (t), my of-
fice windows are currently shut. An intervention on the state of the window—opening 
it—will spatially translate the positions of all the particles in the window by some non-
trivial amount. The delicate choreography of particle collisions required to secure anti-
entropic dynamical evolution will be disrupted: many collisions between air molecules, 
electromagnetic radiation, dust, molecules in the glass, etc. that needed to take place will 
not, while many others that would not have occurred now will. The delicate correlations 
between the positions and momenta of particles in the vicinity of my office window will 
be washed out by these collisions, resulting in an entropic dynamical evolution. On short 
time scales, only the collection of particles in a fairly small spatiotemporal region around 
my office window will undergo entropic evolution; the rest of the universe will continue 
to evolve anti-entropically.13 However, at the boundary the particles in this spatiotem-
poral region will interact with the particles outside of it, disrupting their carefully cho-
reographed dynamical evolutions and thereby expanding the size of the spacetime region 
in which particles undergo entropic evolution. After enough time, the originally anti-
entropic world ω will have become a world in which every closed system (including the 
universe itself) undergoes entropic dynamical evolution. All because at some earlier time I 
opened my office window.

That is the entirety of the argument that (1) and (2) are inconsistent. One can-
not perform interventions in anti-entropic worlds without turning them into entropic 
worlds. If causal claims like temperature causes pressure are understood as claims about 
what would happen to pressure under interventions on temperature then—insofar as in-
terventions are incompatible with anti-entropic dynamical evolution—causal claims can-
not be meaningful in anti-entropic worlds. Time-reversing an entropic universe does not 
produce a universe with reversed causal relations; it produces a universe with no causal re-
lations at all.14

not only in the spatiotemporal vicinity of the intervention, but also in other causally disconnected 
spacetime regions. The result of a such an anti-entropic-evolution-preserving non-local intervention 
would be to remove (t) from one of the “abnormal” regions in Figure 1 but to modify it in such a way 
as to produce a state that lies in one of the other “abnormal” regions. It is a non-starter to argue that 
the possibility of “interventions” like this would somehow save the day for meaningful causal relations 
in anti-entropic worlds. For starters, they wouldn’t count as interventions in the technical sense at all. 
(For discussion of a few of the difficulties facing non-local “interventions” like this, see (Hausman & 
Woodward, 1999).)

13	 In (Elga, 2001) these spatiotemporal regions of entropic dynamical evolution are called “infected re-
gions”, although he puts the existence of such regions to somewhat different philosophical ends.

14	 A referee asks whether it makes sense to speak of interventions at all in an anti-entropic world, i.e. 
whether interventions themselves are necessarily entropy increasing. There are two things to say about 
this. The first is that an intervention, in the technical sense, is just a change in the value of a variable 
that has to satisfy certain other conditions (see (Woodward, 2003, chapter 3.1) or (Pearl, 2009, chap-
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4.  Conclusion

I want to consider two possible avenues of response. The first attempts to save the idea that 
there are causal relations in anti-entropic worlds. The second recognizes the essential role 
that contingent structure of the actual world plays in the development and application of 
our causal concepts and reasoning strategies and, in doing so, touches on some of the cen-
tral ideas of (Woodward, 2022).

I have employed a difference-making notion of causation throughout. One could aban-
don such a notion in favor of one according to which, for example, causation is a matter of 
nomological determination (Ney, 2009) or the transfer of conserved quantities (Salmon, 
1984, 1994; Dowe, 2000). These approaches to causation face severe difficulties (Haus-
man, 1998, chapter 1; Hausman, 2002; Glynn, 2013; Paul & Hall, 2013) and the fact that 
they would allow one to understand time reversal as entailing causation reversal does not 
seem to me to nearly outweigh those difficulties.15 In fact, I think one philosophical con-
sequence of the methods for inferring causal direction discussed in (Woodward, 2022) is 
to pose yet another difficulty for such approaches. By employing statistical independence 
conditions like CSI and VRI, one can ground a causal asymmetry between states of clas-
sical or quantum systems related by time-symmetric dynamical laws (Janzing et al., 2016; 
Williams, 2022). As illustrated above, there is nothing necessarily emergent or non-funda-
mental about these statistical asymmetries. In classical statistical mechanics, they arise be-
tween microstates whose evolution is described by a Hamiltonian ; if this does not satisfy 
the requirement that they occur in a theory “intended to describe the mechanisms of mi-
crophysical interactions” (Ney, 2009, p. 749), then nothing does. By reducing causation to 
a relation of nomological determination, such accounts indulge in what (Woodward, 2022, 
section 11) calls the “cause-in-laws” picture. As a result, such accounts are insensitive to the 
causal information encoded in the statistical asymmetries that exist between states related 
by fundamental dynamical laws. Such accounts face the burden of explaining why one can 
reliably infer causal direction on the basis of such statistical asymmetries if causation re-
ally is just nomological determination, i.e. if all of the causally relevant information is con-
tained in the laws alone.

Alternatively, one could retain a difference-making account of causation and argue 
that the causal ordering of an entropic world remains fixed under time reversal. One might 
go about this strategy in a couple different ways. If one adopts a standard understanding of 
the time reversal operation, then a sequence of states (t1), ..., (tn) related by the dynamics 
tn

 and the sequence of time-reversed states (−tn), ..., (−t1) also related by −tn
 de-

ter 3), for example); it needn’t be actually carried out by a human agent. Understood in that way, there 
are certainly interventions that do not themselves increase entropy: any change to the microstate of a 
system that does not change its macrostate. How large this class of interventions is will depend on spe-
cific details of the physical system and the particular macrostate in question. (Note that this is differ-
ent than whether the intervention changes the future dynamical evolution of the microstate. As dis-
cussed above, it almost certainly will.) The second thing to say is that if interventions were impossible 
in anti-entropic worlds, then so much the worse for the idea that those worlds contain causal relations.

15	 It is notable that such accounts of causation fail to satisfy any of the quite different sets of criteria for 
evaluating accounts of causation proposed by (Hausman, 1998, chapter 1; Paul & Hall, 2013, chap-
ter 2, and Woodward, 2014, respectively).
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scribe, in general, distinct physical processes. Suppose that one takes the direction of causa-
tion to be the causal ordering that satisfies independence conditions like CSI and VRI; this 
is the same in an entropic world and its time-reversed, anti-entropic partner, so the direc-
tion of causation is fixed under time reversal. This entails that the direction of time and the 
direction of causation systematically come apart in anti-entropic worlds: effects will almost 
always precede their causes. Such an account retains meaningful causal relations in anti-en-
tropic worlds, but at the expense of severing any connection between causal and temporal 
ordering. This is a huge conceptual cost: that connection is central to the everyday and sci-
entific notion(s) of causation whose explication is, at least in part, the aim of providing a 
philosophical account of causation in the first place.

An alternative version of this strategy is pursued in (Farr, 2020). Farr’s particular 
proposal aims to avoid this conceptual cost by adopting a non-standard treatment of 
time reversal. The reason Farr adopts this non-standard treatment is that it allows him to 
identify a world and its time-reverse as alternate descriptions of one and the same world; 
on this non-standard account, the state (t) and its time-reverse (−t) are simply al-
ternate descriptions of a single physical state of affairs. That means that (t1), ..., (tn) 
and (–tn), ..., (−t1) are simply two alternative descriptions of a single sequence of 
instanteous physical states of affairs. The correct causal ordering of that single sequence 
of physical states of affairs is determined by statistical independence conditions like CSI 
and VRI. This causal ordering picks out one of the two alternative descriptions (t1), ... 
or (−tn), ... as the correct one, and thereby determines the direction of time.

The problem with this alternative version of the strategy hinges on its treatment of 
time reversal. Many physical quantities change under time reversal: the spin of an electron, 
the direction of a magnetic field, the momentum of a physical system, and so on. (As de-
scribed by many of the references in footnote 4, there is good physical reason to require 
this.) To avoid the conclusion that a sequence of states and its time-reverse describe dis-
tinct physical processes, Farr needs to deny physical significance to properties that are not 
invariant under time reversal; otherwise an instantaneous state and its time-reverse could 
not simply be alternate descriptions of a single physical state of affairs. This requires Farr 
to claim that properties that change under time reversal, like momentum, the direction 
of a magnetic field, the spin of a quantum system, etc. “are either (i) not causal, or (ii) not 
genuine properties of instantaneous states” (Farr, 2020, p. 201).16 A full examination of 
the challenges faced by such a proposal is largely orthogonal to my main focus here, but for 
present purposes I will say the following. Abandoning the standard interpretation of prop-
erties like spin and magnetic fields as genuine, causally efficacious physical properties is 
(i) ad hoc—the only motivation is that it is required to interpet (t) and (-t) as describ-
ing a single physical state of affairs, which is itself only motivated by Farr’s goal of main-
taining a fixed causal direction under time reversal—and (ii) seems to have enormous (but 
unaddressed in (Farr, 2020)) consequences for the explanatory resources of our physical 

16	 See also: “[time reversed]-twins differ only in terms of notation: they represent a single possible world, 
and hence notation that varies under time reversal (such as the direction of velocities) should not be 
taken to represent a property of the target system” (Farr, 2020, p. 191) and “any quantities that differ 
between [time reversed]-twins (such as instantaneous velocity, spin, and so on, as discussed above) can 
be considered descriptive artefacts that equally correspond to a single time-direction-independent... 
state of affairs” (Farr, 2020, fn. 18).
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theories, apparently invalidating the myriad explanations that invoke these “causally ineffi-
cacious” quantities.17

I think the prospects for retaining meaningful causal claims in anti-entropic worlds are 
dim. That said, one might start to wonder what is really at stake here. Such worlds are fan-
tastically foreign to us: eggs unscramble; photons are emitted from our retinas with wave-
lengths perfectly matched to their incident surfaces; food is reconstituted in stomachs, re-
gurgitated, and spontaneously recombines; previously dead organic matter is reanimated 
and undergoes anti-aging; and so on. Life in such worlds defies imagination.18 So there are 
no causal relations in such worlds: who cares?

This brings me to the second avenue of response. Down this second avenue lies an 
epistemically modest attitude: anti-entropic worlds are so different from the actual world 
that we have no epistemic warrant for judging the presence or absence of causal relations in 
those worlds based on attempts to apply causal concepts developed to reason and navigate 
in the actual world.

In particular, the wordly infrastructure that supports causal reasoning in the actual 
world—for example, the widespread satisfaction of independence conditions like CSI and 
VRI—is entirely absent in anti-entropic worlds.19 This presents us with a dramatic mis-
match between the worldly infrastructure of anti-entropic worlds and contexts in which 
our real-world causal concepts and reasoning strategies can be reasonably applied. This is 
because the concepts and strategies that we have developed for causal reasoning in the ac-
tual world are built to exploit precisely the worldly infrastructure that is absent in anti-en-
tropic worlds. Our causal concepts and strategies are designed to be applied to worlds that 
share certain structural features with ours; in particular, worlds in which CSI and VRI are 
generically satisfied. Here we make contact with Woodward (2022) whose point, in part, is 
to remind us that our causal concepts have been developed by human beings—over a long 
evolutionary history—for the purpose of exploiting certain pervasive structural features of 
the world so they can achieve certain pragmatic and intellectual goals.20 These structural 
features of the world include, among other things, various independence conditions like 
CSI and VRI that allow for local interventions and modular reasoning.21 When those struc-
tural features are present, the causal concepts that we have developed to exploit those struc-
tural features enable us to make reliable causal judgments.

However, when confronted with a world in which those structural features are widely 
or uniformly absent—for example, worlds in which CSI and VRI fail dramatically—then 
epistemic honesty demands we recognize that we are at a loss. We should not expect the 
causal concepts and strategies that we have developed to navigate the actual world to be ap-
plicable: the worldly infrastructure that licenses their use and supports their successful ap-

17	 Whether quantities that include time derivatives in their definition, like momentum, are properties of 
instantaneous states is a more subtle question; see (Albert, 2000; Arntzenius, 2000; Smith, 2003).

18	 Indeed, I find the argument in (Maudlin, 2007, chapter 4.3) that beings in such worlds would not have 
conscious experiences at all fairly compelling.

19	 This raises an interesting question about the precise connection between the satisfaction of CSI and 
VRI and the fact that the actual world is entropic.

20	 See also (Woodward, 2014) for how this fact should impact the way we approach theorizing about 
causation.

21	 See also (Hausman & Woodward, 1999; Cartwright, 2002; Hausman & Woodward, 2004).
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plication is not present. If such a world has causal structure at all, our methods are incapa-
ble of diagnosing it. Intelligent beings in such a world, presuming they could exist and that 
their survival (like ours) would depend on successfully exploiting various dependence rela-
tionships in that world, would inevitably develop a radically different set of concepts and 
strategies for doing so. Only hubris could suggest that we can apply our own parochial set 
of causal concepts to form reliable judgments about the presence or absence of causal rela-
tions in such a world.

Some will be inclined to think that by tying an account of causation to contingent fea-
tures of the actual world so tightly as to restrict its applicability in this way, one is exhibit-
ing something like a lack of philosophical ambition.22 I disagree. Emphasizing the impor-
tant role that independence conditions like CSI and VRI have played in shaping our causal 
concepts and supporting successful causal reasoning is, I think, an essential aspect of any 
naturalistic analysis of causation. Indeed, any such naturalism ought to be built on a foun-
dation that, among other things, includes an acceptance of the contingency of our causal 
concepts and strategies for formulating successful causal judgments, and of the pragmatic 
forces driving their developmental history. An approach to analyzing causation that focuses 
on a detailed accounting of the worldly infrastructure that shapes and supports our causal 
reasoning strategies promises to yield a richly informative account of causation, but one 
that can be sensibly applied to a comparatively small volume of the space of possible worlds. 
Focusing on how contingent structural features of the actual world ground our causal con-
cepts is not a widely adopted understanding of what it means to be engaged in providing an 
account of the metaphysics of causation, but I think it offers a promising path for those in-
terested in naturalistic analyses of our causal concepts and reasoning strategies.
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