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ABSTRACT:  Despite being a milestone in the history of statistical causal inference, Sewall Wright’s 
1918 invention of path analysis did not receive much immediate attention from the statistical and sci-
entific community. Through a careful historical analysis, this paper reveals some previously overlooked 
philosophical issues concerning the history of causal inference. Placing the invention of path analysis in a 
broader historical and intellectual context, I portray the scientific community’s initial lack of interest in 
the method as a natural consequence of relevant scientific and philosophical conditions. In addition to 
Karl Pearson’s positivist refutation of causation, I contend that the acceptance of path analysis faced sev-
eral other challenges, including the introduction of a new formalism, conceptual barriers to causal infer-
ence, and the lack of model-based statistical thinking. The presence of these challenges shows that the de-
layed progress in causal inference in the early twentieth century was inevitable.
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RESUMEN:  Pese a suponer un hito en la historia de la inferencia causal estadística, la invención de Sewall 
Wright del método de caminos en 1918 no recibió demasiada atención inmediata por parte de la comunidad 
científica y estadística. Mediante un análisis histórico cuidadoso, este artículo muestra algunas cuestiones filo-
sóficas previamente desatendidas acerca de la historia de la inferencia causal. Situando la invención del aná-
lisis de caminos en un contexto histórico e intelectual más amplio, presento la falta inicial de interés de la co-
munidad científica como una consecuencia natural de factores científicos y filosóficos relevantes. Además de la 
refutación positivista de la causación por parte de Karl Pearson, defiendo que la aceptación del análisis de ca-
minos se enfrentaba a otros retos, incluyendo la introducción de nuevos formalismos, barreras conceptuales a 
la inferencia causal, y la ausencia de un pensamiento estadístico basado en modelos. La existencia de estos retos 
muestra que el retraso en el desarrollo de la inferencia causal a principios del siglo xx era inevitable.
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1.  Introduction

A challenge faced by scientists in many domains is answering causal questions from statis-
tical data, especially when randomized experiments are unavailable or impractical. In the 
last few decades, numerous innovations have been made in statistical causal inference, such 
as graphical causal models (Spirtes et al., 1993; Pearl, 2000; Hitchcock, 2023) and the po-
tential outcomes framework (Rubin, 1974).1 The application of these methods in biomed-
ical and social sciences has proven fruitful (see, e.g., Pearl, 1995; Imbens & Rubin, 2015). 
This is strong evidence that the notion of causation is indispensable for statistical sciences 
in both experimental and nonexperimental studies. This may sound like a cliché to many; 
however, looking back at the history of statistics, causation was not always a welcomed 
idea. In fact, when modern statistics was born in the hands of Francis Galton and Karl 
Pearson at the turn of the 20th century, analysis of correlation rather than causation was 
the central theme.2 It was in this historical context the population geneticist Sewall Wright 
introduced path analysis —now widely recognized as the earliest precursor to graphical 
causal modelling (for the history of path analysis, see Provine, 1989; Shipley, 2016; Pearl & 
Mackenzie, 2018).

Realizing that Pearson’s correlation analysis could not answer causal questions in ge-
netics, Wright designed path analysis to infer new causal knowledge by combining cor-
relational data with prior causal knowledge. Despite being an important innovation, the 
method did not attract much immediate attention from the statistical community.3 Even 
negative responses (e.g., Niles, 1922, 1923) were sparse. Several decades later, path analy-
sis was rediscovered in the social sciences (see, e.g., Duncan, 1966), followed by the emer-
gence of various causal inference methods, including the abovementioned potential out-
comes and graphical modelling frameworks. For those who have observed the success of 
causal inference in contemporary statistics, the question of why the invention of path 
analysis received little immediate attention naturally arises. As a philosopher of science, 
however, my interest in this paper is not merely historical. Through a careful historical 
analysis, this paper will unveil a range of philosophically intriguing issues regarding path 
analysis and statistical causal inference that have been overlooked or underexplored in 
prior discussions.4

It is well-known that Pearson strongly opposed the idea of causation. One may, there-
fore, be tempted to blame Pearson (and his followers) for impeding progress in causal in-
ference.5 While Pearsonians’ aversion to causation is a salient explanatory factor that we 

1	 It is worth mentioning that the potential-outcomes approach to causal inference also has a precursor 
in the early 20th century, namely, Neyman (1923/1990).

2	 For a brief introduction to the history of modern statistics, see Otsuka (2022, chapter 1).
3	 Path analysis didn’t make a notable impact during the first half of the 20th century, except that a couple 

of psychologists (Burks, 1928; Engelhart, 1936) found its applications in educational psychology.
4	 For philosophical discussions on path analysis, see Irzik (1986), Griesemer (1990, 1991), and Irzik and 

Meyer (1987), although they didn’t devote much space to its history.
5	 I do not intend to attribute this simple-minded explanation to any author, nor is it essential for my pa-

per that anyone has seriously made this proposal. That said, Pearl and Mackenzie (2018, p. 67) seem 
to have this idea in mind when they claim that “the death of causation” was the casualty of Galton 
and Pearson’s invention of correlation: “When it comes to explaining the expulsion of causality from 
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should not ignore, it would be a mistake to claim that Pearsonians should bear the sole or 
primary responsibility for the delayed progress in causal inference. To begin with, it was 
not a coincidence that path analysis came two decades after Galton and Pearson discov-
ered correlation: correlation coefficients are an essential component of path analysis. For 
this reason, Galton and Pearson’s discovery of correlation should be seen as a precondi-
tion rather than a hindrance for Wright’s path analysis. In this paper, I suggest that the 
delayed acceptance of path analysis is a multifactorial event with several important con-
tributing factors. By depicting a fuller picture of the history of path analysis, I hope to 
show that the slow progress in causal inference in the early twentieth century was, in fact, 
a natural consequence of relevant scientific and philosophical conditions. It was just too 
challenging to make real progress in statistical causal inference back in the early twentieth 
century.

The paper is structured as follows. In section 2, I provide an exposition of the method 
of path analysis using Wright’s example and then summarize a few key features of the 
method. Section 3 discusses Pearson’s positivist philosophy of science and Henry Niles’s 
Pearsonian objections to Wright’s path analysis. This tension between Wright and Pearso-
nians, however, is only a small part of the story. In section 4, I place the invention of path 
analysis in a broader historical context, featuring the paradigm shift from Pearson’s mod-
el-free descriptive statistics to Fisher’s model-based inferential statistics. Within this con-
text, I identify a few factors that can explain the delayed acceptance of path analysis. First, I 
argue in section 5 that Wright’s contemporaries were not yet ready to appreciate the newly 
introduced path diagram. In addition to being an unconventional formalism, the analytic 
power of the path diagram was underestimated because its power had not been demon-
strated on rigorous grounds. Second, I show in section 6 that the success of classical mi-
crophysics at the turn of the 20th century had a deep influence on people’s thinking of 
causation. This created conceptual barriers to progress in causal inference in nonphysical 
sciences in which a different notion of causation was needed. Third, in section 7, I suggest 
that there could have been (implicit) concerns regarding the empirical validity of (causal 
and statistical) assumptions made by path analysis. These concerns, however, could not 
be properly formulated, not to mention addressed, before Fisher’s model-based statistical 
thinking was well-entrenched. Once we take all these factors into consideration, it becomes 
clear that the delayed progress in causal inference was an unavoidable consequence of rele-
vant scientific, historical, and philosophical conditions. Section 8 concludes with a quick 
remark on the necessity of an integrated history and philosophy of science (integrated 
HPS) approach to the history of causal inference.

statistics … There simply is no other way to understand how statistics became a model-blind data-re-
duction enterprise, except by putting on our causal lenses and retelling the stories of Galton and Pear-
son in the light of the new science of cause and effect. In fact, by so doing, I rectify the distortions in-
troduced by mainstream historians who … marvel at the invention of correlation and fail to note its 
casualty —the death of causation.”
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2.  Path Analysis and Its Key Features

In the early 20th century, statistically minded scientists such as biometricians and popu-
lation geneticists started to realize the need for a tool to analyze nonexperimental data in 
hopes of solving causal problems concerning, for instance, the mechanism of inheritance. 
An example of such kind of causal query is to estimate the relative causal importance of dif-
ferent factors in determining variations in animal traits. Realizing the limitations of Pear-
son’s correlation analysis, Wright invented path analysis in 1918.6 Wright suggested two 
uses of his method: to estimate the relative strengths of known causal relations or to test 
whether a causal hypothesis is true or false. I will only demonstrate how path analysis is 
used in the first way using an example from Wright (1920).

Wright (1920, p. 321) raises the following causal question: what is the comparative im-
portance of the influence of heredity (i.e., genetic constitutions) and environmental factors 
on the pattern of coat colours in guinea pigs? This question clearly could not be answered 
using controlled experiments. Nor could it be solved using correlation analysis alone. The 
reason for the latter is that “correlation between two variables … gives merely the resultant 
of all connecting paths of influence” (Wright, 1921, p. 557), but to answer Wright’s ques-
tion, a decomposition of correlation along different causal paths is needed. This prompted 
Wright to invent path analysis. The method begins by positing causal relations among var-
iables used to characterize the target system. These causal postulates come from Wright’s 
knowledge of the mechanism of inheritance in guinea pigs and can be depicted in a path di-
agram —a primitive form of a graphical causal model (see Figure 1). A path diagram is con-
ducive and essential to causal inference, as we shall see in section 5.

Figure 1
Wright’s (1920) path diagram,  

showing how variations in coat colour in guinea pigs can be causally explained

6	 The method was further developed by Wright in 1920, 1921, 1923, and 1934.
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In this diagram, an arrow connecting two variables represents direct causation be-
tween them. An arrowhead indicates the direction of causation. Variables H, H’, H’’, 
and H’’’ represent the genetic constitutions of the four individual guinea pigs. G, G’, G’’, 
and G’’’ represent the genetic constitutions of the four germ cells. E represents environ-
mental factors, which are the same for the four guinea pigs that were born in the same 
litter. D represents other factors, largely developmental irregularity. Lowercase letters a, 
b, ..., alongside those arrows represent path coefficients. A path coefficient measures the 
strength or importance of a direct causal relation (relative to other direct causes of the 
same effect). When an effect variable has multiple causes, calculating the path coeffi-
cients of these causal relations involves decomposing the variability of the effect variable 
in proportion to each cause’s contribution to this variability.7 As Wright (1920, p. 329) 
explains,

The path coefficient, measuring the importance of a given path of influence from cause to ef-
fect, is defined as the ratio of the variability of the effect to be found when all causes are constant 
except the one in question, the variability of which is kept unchanged, to the total variability. Var-
iability is measured by the standard deviation ... It can be shown that the squares of the path coef-
ficients measure the degree of determination by each cause.

Now, to determine whether the genetic factor (H) or the environmental factor (E) plays 
a greater role in coat colour patterns, we need to compare the relative causal contribu-
tions of H and E, which, in turn, is to compare the values of path coefficients h and e. 
The problem, however, is that these path coefficients cannot be directly determined 
from the data or background knowledge. To solve this problem, Wright wrote down a 
series of linear equations about these path coefficients based on some general principles 
about causation and correlation (details below); since some of the quantities in the equa-
tions could be known from data or background knowledge, we could solve these equa-
tions and infer the unknown. The question is: based on what principles can we obtain 
the equations?

First, according to Wright (1920, p. 329), “the squares of the path coefficients measure 
the degree of determination by each cause. If the causes are independent of each other, the 
sum of the squared path coefficients is unity”.8 That is, our first principle is that the causal 

7	 For example, for the path from E to O’, its path coefficient can be denoted as pO’.E, whose value is la-
belled ‘e’ on the diagram. The value of pO’.E can be obtained by first calculating the total variability of 
the effect variable O’ (denoted as σO’; measured by the standard deviation of O’) from data and then 
calculating the variability of O’ when holding constant the values of the other direct causes of O’ (i.e., 
H’ and D). This conditional variability can be denoted as σO’.E. Finally, we obtain the path coefficient: 
pO’.E = σO’.E /σO’. What we are doing here is basically proportionally attributing the variability of O’ to 
the three causal paths going into O’.

8	 This implies that the values of path coefficients depend on the assumed path diagram. If the diagram is 
drawn differently —for instance, by changing the direction of a certain causal path— the path coeffi-
cients might end up different. More specifically, if we reverse the direction of causation between D and 
O’, values of h, e, d will be different: in this case, only H’ and E are direct causes of O’, so Equation (1) 
would become h2 + e2 = 1.
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impact of all (direct) causes on an effect variable should add up to unity.9 For example, for 
the effect O’ and its three (direct) causes H’, E, and D, we have (p. 330):

	 h2 + e2 + d 2 = 1	 (1)

Second, according to Wright (1920, p. 330), “the correlation between two variables can be 
shown to equal the sum of the products of the chains of path coefficients along all of the 
paths by which they are connected”. Therefore, our second principle is that the correla-
tion between any two variables should be completely explained by the causal paths linking 
them (disregarding random errors due to chance). For example, the correlation between 
O and O’ (i.e., rOO’) can be explained by three causal paths, namely O-H-G-H’’-G’-H’-O’,  
O-H-G’’-H’’’-G’’’-H’-O’, and O-E-O’.10 Wright assumed that the causal relations were linear 
so that we could multiply the path coefficients along a directed causal path, and the causal 
influence from distinct causal paths was additive. With these assumptions, we then obtain 
(Wright, 1920, p. 330):

	 rOO’ = habbah + habbah + ee	 (2)

By following a similar procedure, we can obtain more equations in addition to (1) and (2). 
In these equations, correlation coefficients such as rOO’ can be inferred from data. Wright 
relied on Mendel’s laws of inheritance (e.g., the law of segregation and the law of domi-
nance) to determine path coefficients a and b (see Wright, 1920, p. 331). By solving the 
equations, Wright was able to obtain the values of h and e that were needed to answer the 
causal question he raised earlier.11

The above illustration reveals several key features of Wright’s method:

1.	 Path analysis remains noncommittal to any philosophical conception or definition 
of causation but relies only on a few intuitively plausible principles about causation 
(e.g., causation is distinct from correlation; the correlation between two variables 
can be explained by causal connections between them).

2.	 Path analysis requires sufficient and reliable background causal knowledge about 
the target system. Such substantive and subject-specific knowledge may come from 
several sources (e.g., theoretical hypotheses or laws, previous experiments or obser-
vations, or common sense).

9	 In constructing a path diagram, we need to make sure that we have included all the direct causes of 
an effect variable (so that the system is “closed”). Note, however, that this strong condition is not re-
quired in modern graphical causal modelling, which adopts a different method to quantify causal ef-
fects.

10	 Not all paths linking two variables can contribute to the correlation of the two variables. When the 
path diagram is more complex, it is often difficult to decide which paths contribute to the correlation. 
So, Wright discovered some graphical rules to figure out which causal path counted. I will discuss this 
later in section 5.

11	 Wright’s (1920) result is that in a group of guinea pigs where mating was random, variations in guinea 
pigs’ coat colour patterns were determined 42.2% by genetic factors, and 57.5% by irregularity in de-
velopment, while environmental factors played a relatively minor role.
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3.	 Path analysis uses path diagrams to represent domain-specific causal knowledge 
and make inferences about causal effects.12 A path diagram, as an integral part of 
the method, helps us obtain the correct equations we need.

4.	 Path analysis requires trustworthy correlational data from which the needed cor-
relation coefficients can be reliably inferred. Additionally, it is worth noting that 
path analysis cannot be used to derive causal relations from purely correlational da-
ta.13

5.	 Path analysis makes simplifying and idealizing assumptions when representing and 
quantifying causation: the target causal system is linear and additive, it contains no 
causal feedback or loops, and direct causes of an effect are independent (i.e., nonin-
teractive).

Unfortunately, the invention of path analysis did not obtain much immediate attention. 
This may not sound particularly surprising to some; after all, events of this type are not un-
common in the history of science. Still, the delayed acceptance of path analysis calls for an 
explanation. More importantly, as we shall see, through a careful historical analysis, several 
intriguing but previously unexplored philosophical issues about path analysis will be re-
vealed. This also motivates the historical framing of this paper.

As a first attempt, one may appeal to Pearson’s (and his follower, Niles’s) aversion to 
causation to explain the initial lack of enthusiasm for path analysis: as positivists, Pearson 
and Niles insisted that the idea of causation was philosophically unfounded, and therefore, 
scientifically meaningless. Pearson was not an ordinary statistician: as one of the pioneers 
of modern statistics, Pearson retained a dominant presence in the field for several decades. 
For instance, he served as the editor of a major journal in statistics, Biometrika, until his 
death in 1936 (see Aldrich, 2013). This paper recognizes that the Pearsonian’s overt hos-
tility to causation played an important role in the delayed acceptance of path analysis; in 
the next section, I will go through and analyze this role in detail. However, this factor alone 
cannot provide an adequate explanation; moreover, putting too much emphasis on this fac-
tor risks creating an unnecessary opposition between causal and correlational analysis, as 
well as leading to the negligence of other equally or even more important explanatory fac-
tors. In sections 4-7, I endeavour to provide a fuller and more faithful depiction of the sta-
tus of path analysis in the early 20th century.

3.  Pearsonians’ Resistance to Causation and Path Analysis

As classical physics achieved its mature form at the end of the 19th century, the positivist 
view of causation —the idea that “causation” should be eliminated from mature science 
and replaced by something more “scientific”— became exceedingly popular among scien-
tists. For example, for Ernst Mach, the prevalence of functional relations in physics showed 

12	 From Fisher’s statistical modelling perspective, path diagrams can be seen as a kind of explanatory 
model; according to Lehmann (1990, p. 959), “an explanatory model … requires detailed knowledge 
and understanding of the substantive situation that the model is to represent.”

13	 This task of discovering causal structures from purely observational data —when certain conditions 
are satisfied— is made possible by Spirtes et al. (1993).
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that the “old-fashioned idea” of causality was “a little clumsy” and should be abandoned 
(Mach, 1886, as cited in Heidelberger, 2010). Influenced by Mach, in The Grammar of Sci-
ence, Pearson rejects the idea of causation and argues that causation is just a special case of 
correlation, namely perfect correlation (a correlation is perfect when its Pearson coefficient 
is 1). However, Pearson argues, there is no such thing as perfect correlation in the universe; 
it is merely a conceptual limit or statistical approximation, not an idea based on our experi-
ence (Pearson, 1911, p. 156f). “No phenomena are causal”, Pearson (p. 174) claims. Conse-
quently, “[i]t is this conception of correlation between two occurrences embracing all rela-
tionship from absolute independence to complete dependence, which is the wider category 
by which we have to replace the old idea of causation” (p. 157; emphasis added).

Between 1896 and 1911, three editions of The Grammar were published. Given Pear-
son’s influence, Wright must have heard of Pearson’s arguments against causation before he 
published path analysis in 1918. Wright, however, did not seem to be bothered by these ar-
guments. His works show no sign of interest in philosophical disputes over causation. Since 
1918, he had been using the concept of causation in an intuitive and pragmatic way. In par-
ticular, when Wright introduces the method of path analysis in his 1921 paper, he says: “the 
method depends on the combination of knowledge of the degrees of correlation among 
the variables in a system with such knowledge as may be possessed of the causal relations” 
(Wright, 1921, p. 557). Here, Wright bluntly assumes that there is a distinction between 
“causation” and “correlation” without offering any explanation or justification. For Pearson 
and his follower Niles, Wright’s indifference to the philosophical basis of causation was un-
acceptable. This is why Niles (1923, p. 256) complains that Wright “spends comparatively 
little time dealing with the philosophic basis of his theory” (we will return to Niles later).

The Pearsonian also objected to the method on the basis that it required the pre-spec-
ification of a set of causal postulates about the target system; such causal postulates belong 
to what are broadly known as data-generating processes (which are typically unobservable). 
This contrasts with Pearson’s method of correlation analysis, which does not require the 
postulation of any unobservables. Given that today it is standard practice to posit data-gen-
erating processes behind data, one may wonder why the Pearsonian statistics did not adopt 
this approach. An important reason can be found in The Grammar, in which Pearson de-
velops a positivist epistemology of science. Pearson (1911, p. 86; emphasis added) argues 
that science can only acquire knowledge from our “sense impressions”, namely, the data we 
can directly access: “Law in the scientific sense is thus essentially a product of the human 
mind and has no meaning apart from man.” Presumably, here “scientific laws” also include 
those laws of correlation —that is, statistical regularities— we find in statistical data.

Given that for Pearson all scientific knowledge is contained in observed data, a statisti-
cal method should not and need not presuppose any data-generating mechanism beyond the 
reach of our sense impressions. Any reliable knowledge should be directly inferred from data 
in a mathematically valid way without postulating anything beyond what is observed. That is, 
what scientists should be after are laws of correlation inferred from data rather than laws of 
causation out there in the world. Therefore, from a positivist point of view, whatever a path 
diagram represents, it goes beyond our sense impressions and should be rejected a priori.

Henry Niles, one of Pearson’s close followers, was strongly opposed to Wright’s path 
analysis. His (1922, 1923) objections to Wright, published in Genetics, seem to be the only 
noteworthy criticisms of path analysis in the first half of the twentieth century. These ob-
jections closely follow Pearson’s positivist philosophy; therefore, although Pearson did not 
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directly respond to the invention of path analysis, by reading Niles we can still obtain a 
good grasp of what Pearson would have said about path analysis.

Niles’s first objection to Wright is that there is no point in distinguishing between 
causation and correlation since there is no real difference between them. The argument, 
basically a reiteration of Pearson’s positivist refutation of causation, goes as follows. There 
could be a real difference between causation and correlation only if there was some kind of 
“inherent necessity” in causation that was lacking in correlation. However, according to 
Niles (1922, p. 259), “in no case has it been proved that there is an inherent necessity in the 
laws of nature.” Setting aside the philosophical plausibility of this argument, it is somewhat 
surprising that in 1922, a purely philosophical objection to a new scientific method could 
be published in Genetics (a journal over which Pearson had no direct control). This sug-
gests that Pearson’s positivist philosophy of science did have a considerable impact on the 
scientific community during the 1920s.

The second objection is more intriguing: “[t]he basic fallacy of [Wright’s] method 
appears to be the assumption that it is possible to set up a priori a comparatively simple 
graphic system which will truly represent the lines of action of several variables upon each 
other” (Niles, 1922, p. 261). Niles’s worry here is how we could guarantee that the “simple 
graphic system” (the path diagram) used in path analysis “truly represent[s]” causal reality. 
As he explains, “[i]f we put into our system all important causes we know of, and all the im-
portant causes of these [variables], and so on back, we would cover the whole universe and 
even then find no logical stopping place” (Niles, 1922, p. 262). It seems that again, this ar-
gument was inspired by Pearson (1911, p. 131) who says that “the causes of any individual 
thing thus widen out into the unmanageable history of the universe.”

It seems to me that Niles’s (as well as Pearson’s) worry was primarily metaphysical or 
conceptual (at least on a literal reading).14 Essentially, his concern is that a true causal rep-
resentation of any particular system of interest must include the entire causal history of the 
system, which is something that a simple and limited path diagram cannot do. Therefore, 
to justify the use of path diagrams, one needs to show the grounds on which we can iso-
late a causal system from its “unmanageable” causal history. Wright (1923, p. 25), however, 
merely asserts that such isolation of limited systems works satisfactorily in practice, with-
out giving any further explanation for why the isolation is justified; as he says, “[i]n practice 
we find that we can satisfactorily isolate a portion of the universe and deal with causation 
relative to this limited system.”

Thanks to recent developments in causal modelling, we now know that the key to the 
justification is the statistical independence of exogenous variables in a causal model; a vari-
able is exogenous as opposed to endogenous if it does not have causes in the specified causal 
model. To isolate a causal system from its “unmanageable” history, we only need to ensure 
that the exogenous variables specified in our causal model are effectively statistically inde-
pendent —a requirement that can often be met in practice. The underlying rationale is also 
known as screening-off or the causal Markov condition: conditioning on those (statistically 

14	 That is, the worry here is not about the empirical validity of the path model. I will discuss (potential) 
empirical concerns about path analysis later in section 7. Although nothing was preventing Niles from 
having empirical concerns about path analysis, these empirical concerns were at best implicit in Niles’s 
objections.
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independent) exogenous variables of a causal model, further knowing the causal history of 
these exogenous variables becomes irrelevant for explaining or predicting the values of en-
dogenous variables in that model. This justification of causal isolation, however, was not 
available to Wright. This means that even if Wright was right that in practice, the isolation 
of local causal systems was justified, he nevertheless was not able to provide a systematic 
and rigorous ground for the isolation. In this sense, Niles’s second objection did pose a gen-
uine challenge to the validity of Wright’s path analysis.15

4.  A Fuller Picture: Paradigm Shifts in Modern Statistics

In this section, I will situate the invention of path analysis in a broader historical context 
and paint a fuller (and hopefully also more faithful) picture of the status of causal inference 
in the early 20th century. A key to this historical picture is Fisher’s recasting of Pearson’s 
model-free descriptive statistics into model-based inferential statistics. Before that, the par-
adigm in statistics was analysis of correlation (without assuming any data-generating pro-
cesses). From the perspective of the model-free paradigm, Wright’s introduction of path 
analysis —which explicitly posits a data-generating process— was a notable departure from 
this dominating paradigm.16

Modern statistics did not start out being dominated by analysis of correlation. In fact, 
in 1877, Galton tried to find a causal explanation for the phenomenon of regression to 
the mean in human inheritance (the phenomenon that human heights tended to “revert 
to mediocrity”). It was his failure to find a causal explanation that made him believe that 
causal analysis did not apply to this problem, so he turned to correlation analysis around 
1889 (Ariew et al., 2017). Galton’s turn from causation to correlation had a significant im-
pact on Pearson. Pearson was deeply impressed by Galton’s discovery of correlation and 
its applications in biometry (aka biometrics). He followed Galton and began to work on 
mathematical analysis of correlation at the end of the 19th century.

In the early 20th century, with the efforts of Pearson and others, analysis of correlation 
started to become the dominating paradigm in statistics, especially after the foundation of 
Biometrika in 1901 (see Table 1). The success of correlation analysis in biometry convinced 
Pearson that its scope of application could be expanded to all special sciences in the future. 
In commenting on Galton’s contribution to statistics, Pearson (2011/1930, p. 1) claims 
that “[u]p to 1889 men of science had thought only in terms of causation, in future they 
were to admit another working category, that of correlation, and thus open to quantitative 
analysis wide fields of medical, psychology and sociological research.” Pearson’s vision for 
the future of correlation was not without its grounds. Even if statistics today has gone far 
beyond what Pearson could imagine, Pearson correlation coefficients remain a basic and es-
sential tool across a broad range of scientific domains.

15	 I thank Kino Zhao and Jun Otsuka for helping me realize the significance of Niles’s second objection.
16	 See Spanos (2022) for a more detailed discussion of major paradigm shifts in statistics. Following 

Spanos, I adopt the well-known concept of “paradigm” to describe progress in statistics (although 
my adoption of this term doesn’t imply that I agree with Thomas Kuhn’s original view on scientific 
change).
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Table 1.  Major events in the history of statistics and causal inference

Year Event

1889 Galton invented the notion of correlation.

1892 Pearson published 1st edition of The Grammar of Science.

1896 Pearson published first paper on correlation.

1901 Galton, Weldon, Pearson founded Biometrika.

1911 Pearson published 3rd edition of The Grammar.

1918 Wright published his first paper on path analysis.

1922 (1)  Fisher laid the foundations for model-based statistics.

(2)  Niles criticized path analysis.

1925 Fisher published Statistical Methods for Research Workers.

…

1966 Path analysis was rediscovered by sociologist Duncan.

1975 Li published Path Analysis: A Primer.

…

1993 Spirtes et al. published Causation, Prediction, and Search.

2000 Pearl published Causality.

After achieving methodological successes in correlation analysis, Pearson seemed to 
come to the realization that a good way to defend the paradigm of correlation analysis was 
to take issue with “the old idea of causation” and show that it could be replaced with corre-
lation. This defence was provided in The Grammar where Pearson critically examined the 
philosophical basis of causation. Notably, in the first two editions of The Grammar pub-
lished in 1892 and 1900, Pearson had not yet explicitly formulated the idea that causation 
should be replaced by correlation, even if he had been working on correlation since 1896. 
That is, he did not propose those provoking arguments against the role of causation in statis-
tics until the third edition of The Grammar (published in 1911), in which Pearson added a 
new chapter titled “Contingency and correlation: the insufficiency of causation”. His skepti-
cism about causation reached its peak in this new chapter, especially in his famous claim that 
“we have to replace the old idea of causation [with correlation].” This suggests that Pearson’s 
arguments against causation in the 1911 edition were more like afterthoughts or reflections 
on his earlier works on correlation. It is therefore fair to say these arguments were invoked to 
further defend and entrench the paradigm of correlation analysis.

Going against the established Pearsonian paradigm may at least partially explain the in-
itial lack of enthusiasm for Wright’s path analysis. Wright was too ahead of his time. His 
method requires the postulation of a data-generating mechanism whereas the shift from 
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Pearson’s positivist paradigm to Fisher’s (1922, 1925) model-based paradigm had not yet 
been initiated, not to mention established.17 Indeed, the merit of path analysis would have 
been better appreciated had model-based statistical thinking already been well-entrenched 
when path analysis was invented. In contrast to Pearson’s positivist statistics, Fisher’s mod-
el-based statistics permits the postulation of unobservable data-generating processes, speci-
fied by probabilistic models; importantly, such probabilistic models incorporate both do-
main-specific substantive information (including causal information) and domain-general 
statistical information (including probabilistic assumptions about the stochastic process 
generating the data) (see Spanos, 2006, 2022).18 Of course, some statisticians may insist 
that Fisher’s model-based statistics does not directly lend support to the legitimacy of path 
analysis. Still, it is undeniable that model-based statistics provides a more suitable frame-
work for path analysis than does Pearson’s positivist statistics since the latter rejects the 
postulation of unobservables altogether.

However, at the same time, by postulating a data-generating mechanism behind ob-
served data, the model-based paradigm faced the challenge of statistical model specification 
(which we shall return later in the paper). Naturally, the idea of statistical model specifi-
cation was not introduced to statistics until Fisher (1922) (cf. Lehmann, 1990). In hind-
sight, it is clear that in adopting a model-based perspective, Wright’s path analysis faced 
challenges regarding the (empirical) validity of path models. These challenges, however, 
were not evident to Pearsonians precisely because the latter lacked this model-based per-
spective. However, I shall argue in section 7 that, behind Pearson’s philosophical skepti-
cism about data-generating mechanisms, there could have been implicit empirical concerns 
about the validity of path models, especially regarding those idealizing assumptions made 
by the models.

In the following three sections, I will discuss three interrelated factors that may have 
contributed to the delayed progress in causal inference in the early 20th century:

—	Causal methods require unconventional formalisms (e.g., path diagrams). The rep-
resentational and inferential power of the path diagram was underestimated by 
Wright’s contemporaries. This underestimation was not only because statisticians 
were not yet ready to adopt a model-based perspective on statistics but also because 
Wright’s path diagrams lacked mathematical rigour.

—	Classical deterministic microphysics had shaped the philosophical notion of causa-
tion at that time. But statistical causal inference in higher-level sciences requires a 
quite different notion of causation (e.g., causation is directional; causes make partial 
contributions to an effect). Unfortunately, the domain-specificity of causation was 
not yet well-aware by 20th-century scientists and philosophers.

17	 I do not deny that model-based statistical thinking existed to some extent before Fisher (1922). The 
idea of a statistical population can already be found, for instance, in Student’s (1908) t-Tests paper. 
But it is fair to say that it was Fisher (especially Fisher, 1925) who laid a solid and rigourous founda-
tion for model-based statistical inference.

18	 As Spanos (2006, p. 99) puts it, empirical modelling in the sciences often “involves an intricate blend-
ing of substantive subject matter and statistical information”; importantly, the assessment of substan-
tive adequacy may often “take the form of applying statistical procedures within an embedding statisti-
cal model”.
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—	In addition to philosophical objections to data-generating mechanisms, there could 
also have been (implicit) concerns about the empirical validity of the (probabilis-
tic and causal) assumptions made in specifying these mechanisms. These empirical 
concerns (which can be articulated and addressed only from a model-based perspec-
tive) may have prompted the Pearsonian to reject data-generating mechanisms alto-
gether and opted for “assumption-free” statistics.

5.  The Analytical Power of Path Diagrams

The formalization of causation and causal inference is challenging, not because it requires 
advanced mathematics but because it requires new formal apparatuses that cannot be di-
rectly found in mathematical textbooks. Furthermore, traditionally, scientists and phi-
losophers of science assumed that scientific theories and inferences should take sentential 
forms (Griesemer, 1991). The role of non-sentential scientific languages, such as diagrams, 
has been underestimated (cf. Abrahamsen & Bechtel, 2015). However, for causal inference, 
conventional formalisms such as algebraic equations and probability calculus alone just 
cannot do the job; in particular, it is difficult to represent the direction of causation using 
algebraic equations and probability calculus without introducing causal arrows.

Notably, unlike diagrams used in descriptive statistics (such as histograms), the path 
diagram, as a type of causal/explanatory model, does much more than visualizing what has 
already been contained in data or equations. As Griesemer (1991) puts it, path diagrams 
“add analytical power to path analysis beyond what is supplied by linear equations”. Pearl 
and Mackenzie (2018, p. 77) explain that the path diagram “is a powerful computational 
device because the rule for computing correlations involves tracing the paths that connect 
two variables to each other and multiplying the coefficients encountered along the way.” 
Wright’s new formalism, therefore, marks a stark departure from Pearson’s descriptive, 
model-free statistics. One may contend that the path diagram can simply be interpreted “as 
a descriptive device to summarize observed correlational patterns” rather than as a causal 
model.19 This interpretation, however, cannot explain why Wright used one-direction ar-
rows in path diagrams. Given that correlations have no direction, such arrows are not an 
economic way of summarizing correlational patterns. Interestingly, as we shall see below, 
Niles omitted all arrowheads in the “path diagrams” he drew in his paper, which indicates 
that Niles had (mistakenly) interpreted path diagrams as a mere descriptive device, think-
ing that these arrowheads were dispensable.

How is the path diagram “a powerful computational device”? Essentially, the function 
of a path diagram is to help scientists determine how correlations in the data can be ex-
plained by causal patterns in the target system so as to derive the equations needed for fur-
ther inference. More specifically, the relationship between causal patterns encoded on the 
diagram and correlational patterns in statistical data can be captured through a few graphi-
cal rules —what Wright calls tracing rules.20 Earlier in section 2, we saw that to explain the 

19	 I thank Jun Otsuka for suggesting this point to me.
20	 For example, Wright (1934, p. 163) formulates the tracing rules as follows: “In tracing connecting 

paths it is obvious that one may trace back along the arrows and then forward as well as directly from 
one variable to the other (perhaps through intervening variables) but never forward and then back.”
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correlation between two variables, we had to trace all relevant causal paths responsible for 
the correlation. This task can be challenging if we are dealing with a large causal network; 
tracing rules helps ease the problem. In fact, these tracing rules play a similar role as those 
used in graphical causal modelling for adjusting for confounding (such as the backdoor and 
front-door criteria; see Pearl, 2000). Thanks to the theory of graphical causal models devel-
oped by Spirtes et al. (1993) and Pearl (2000), we now see why the path diagram (or similar 
formalisms) was a powerful analytical tool.

Nevertheless, in the early 20th century, graph theory had not yet been applied to em-
pirical sciences, so Wright could not have known that the path diagram could be trans-
formed into a rigorous mathematical formalism (i.e., directed acyclic graph). Instead, 
he introduced and used path diagrams mainly on intuitive grounds. His path diagram 
as we saw earlier (in Figure 1) is clearly not yet a serious mathematical model but looks 
more like a picture used to aid the reader’s understanding of the topic. Wright probably 
thought that an intuitive and informal explanation of how path diagrams work sufficed 
to justify their usefulness. But Wright’s contemporaries did not seem to share his intui-
tion. The lack of a solid mathematical foundation may have made it difficult for others 
to see the distinct value of his new formalism. Given also that Pearson and his follow-
ers believed that statistical analysis did not require the specification of a data-generating 
mechanism, people likely thought these path diagrams were merely descriptive devices 
(just like histograms). This further prevented others from appreciating the power of path 
diagrams.

Without seeing path diagrams as an integral part of path analysis, one cannot gen-
uinely understand the logic of the method. This led to some intriguing misunderstand-
ings of path analysis. In Niles’s (1922) reply to Wright, Niles gave some counterexamples 
to path analysis by “demonstrating” that, following Wright’s method, we might obtain 
mathematically impossible values of path coefficients. The problem with Niles’s “demon-
stration” is that in these counterexamples, Niles carelessly —or maybe even intention-
ally— omitted all the arrowheads in the path diagrams he drew, as if the arrowheads were 
dispensable. However, without these arrowheads, a path diagram no longer represents a 
causal structure, and we can no longer correctly write down the equations and calculate the 
path coefficients. This was why Niles got absurd values for path coefficients from his calcu-
lation (see Niles, 1922, pp. 269-271). What makes the story even more interesting is that 
in a later response to Wright, Niles (1923, p. 257) explains that “the omission of arrow-
heads in the diagrams in my [1922] paper was a draughtsman’s error”. This excuse is not 
very convincing. Niles’s calculation unambiguously shows that he did not understand how 
the diagram worked, how those equations were supposed to be derived from the diagram 
by applying tracing rules, and especially, what role the arrows played in the diagram. That 
is, Niles failed to see that path diagrams played a substantial, analytic, and explanatory role 
in statistical analysis.

A similar misunderstanding also happened to Henry Wallace. Despite his positive atti-
tude towards path analysis and Wright’s careful explanations in the correspondence, Wal-
lace failed to see how the method was different from multivariate regression (see Provine, 
1989, p. 148). A reasonable explanation for this confusion is that, similar to Niles, Wallace 
also failed to see that the path diagram was an essential part of path analysis and that it 
played an explanatory rather than merely descriptive role in path analysis. Had he under-
stood the use of path diagrams, it would be immediately clear to him how the two methods 
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differ: one involves a pre-specification of a causal model, whereas the other can be done by 
fitting equations to data without bothering to think about the data-generating mechanism.

It must be emphasized that I am not blaming Niles or Wallace for failing to under-
stand path diagrams. I am merely stating that Wright’s contemporaries were not yet pre-
pared to recognize the analytic and explanatory power of path diagrams as a new type of 
explanatory statistical model (in conjunction with simultaneous equations). This is under-
standable: although Wright rightly pointed out the importance of substantive subject mat-
ter knowledge in statistical inference using path diagrams, Pearson and his followers were 
not yet ready to accept this stark departure from their own model-free paradigm.

6.  Conceptual Barriers to Statistical Causal Inference

In addition to Pearson’s positivist refutation of causation, there were also other conceptual 
or ontological barriers to causal inference back then; I shall discuss two in this section. One 
concerns the direction of causation, and the other concerns causal interpretations of im-
perfect correlations. Both have to do with the dominance of classical physics in shaping sci-
entists’ and philosophers’ thinking about causation back in the early 20th century.

In the previous section, I argue that scientists in Wright’s time were not ready to ap-
preciate the power of path diagrams; this is shown in the omission of arrowheads in path 
diagrams drawn by Niles. There is yet another potential reason, albeit a conceptual (or on-
tological) one, why the Pearsonian might have disliked the path diagram: for Pearsonians, 
there was simply no such thing as the direction of causation. Recall that in Pearson’s posi-
tivist philosophy, causation is just perfect correlation, and correlation has no direction; nei-
ther does causation. More importantly, the direction of causation derives from the direc-
tion of time. But classical (micro)physics has “proven” that time is symmetric which points 
to the conclusion that the direction of causation is an illusion; the arrowheads in the path 
diagram represent nothing in the world. Regarding this skepticism towards the direction of 
causation and time, Wright (1934, pp. 175-176; emphasis added) gives the following brief 
but intriguing response:

Some authors (Pearson, Niles) … [hold the view] that direction in time is of no significance, 
and indeed G. N. Lewis has recently argued for the complete symmetry of the physicist’s time. 
The common sense view that direction in time is a basic perception is not without support, however.

Unlike Pearson and Niles, Wright adopts a commonsensical view of the direction of time 
and causation. This echoes my earlier claim that Wright’s path analysis, including the way 
he uses path diagrams, relies on an intuitive and pragmatic understanding of causation. On 
this pragmatic view, even if classical physics shows that time has no direction at the micro-
scopic level, this does not prove that the idea of time direction in common sense is a mere 
illusion. For macroscopic sciences such as genetics (or even in macroscopic physics), time 
direction can still be in some sense real.

Nevertheless, we should be cautious not to (mis)interpret history through a contem-
porary lens. Wright’s view about causal and temporal directions was far from being a con-
sensus among philosophers in the early 20th century. Back then, philosophers and philo-
sophically minded scientists were more likely to defer to (microscopic) physics without 
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being aware of the disunity of science. In particular, in The Grammar, Pearson explicitly 
supported the unity of science —specifically, the continuity of physical and biological 
sciences. Pearson (1911, p. 116) claims that “[t]he difference between the two branches 
of science is rather quantitative than qualitative; that is, the descriptions of mechanics 
are simpler and more general than those of biology.” If this is the case, there is no rea-
son to treat causation in physics and causation in special sciences as conceptually differ-
ent. Therefore, the idea that causation in special sciences is a different notion than causa-
tion in physics (cf. Hitchcock, 2007) is very unlikely to be anticipated by the Pearsonian. 
For Pearson, if the direction of time had been proven to be illusory in microphysics, this 
would imply that the direction of time and causation had lost its scientific grounds alto-
gether; the direction of time and causation, despite being useful in common sense, became 
unscientific.

Let us now turn to another important conceptual disagreement between Pearson and 
Wright on the notion of causation: Pearson takes the cause-effect relationship to be a de-
terministic relation, with an earlier state of a system completely determining a later state, 
whereas Wright understands the relationship between a cause and an effect as partial and 
statistical (whose strength/intensity is measured by path coefficients).21 Recall that Pearson 
thought that causation was, by definition, perfect correlation, with a correlation coefficient 
of 1. Moreover, in The Grammar (1911, p. 174), he contrasts causation with contingency: 
causation, by definition, implies some sort of “necessity”.

In comparison, the concept of causation presupposed in path analysis is “imperfect” or 
partial. An effect variable Y may have multiple (partial) causes X1, X2, …, Xn, each of which 
makes partial contributions to the effect (e.g., in Wright’s guinea-pigs example, we saw that 
the pattern of coat colours had three distinct contributing causes: genetic constitutions, en-
vironmental factors, and developmental irregularity). On Wright’s use of the term, we are 
allowed to say that “X1 is a cause of Y” even if X1 alone does not determine the value of Y. 
For Pearson, the relationships between each of these factors and the coat colour pattern 
should be described not as causal relations but as (imperfect) correlations. He failed to see 
that we could causally interpret these imperfect correlations, given his preoccupied notion 
of causation as determination or necessitation. Note that one could, of course, designate 
a collection of causes X = {X1, X2, …, Xn} as a (deterministic) cause of Y since there is now 
a perfect correlation between X and Y (for the sake of argument, let us assume that X is a 
well-defined cause-variable). But Pearson would simply respond that labelling this relation-
ship as “causal” adds no substantive insight into the relationship.

Causally interpreting imperfect correlations is no news today, but it was so a century 
ago. In fact, other popular philosophical theories of causation at that time, such as Aristo-
telianism (i.e., causation consists in “inherent necessity” or “power”) and Humeanism (i.e., 
causation is just constant conjunction or regularity), also presupposed some sort of deter-
minism or necessitation. The deterministic conception of causation was also grounded in 
the success of classical physics, which describes the causal structure of the world in terms 
of deterministic dynamical laws expressed by mathematical functional relations (e.g., Ha

21	 Note that we are talking about the relationship between one cause and its effect, which is represented 
by an arrow in a path diagram. Wright, of course, assumed that if we took all the causes of an effect to-
gether, they would fully determine that effect.
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miltonian equations). In this picture, the earlier state of a (closed) system completely deter-
mines a later state. The idea of a partially contributing cause plays no role in classical micro-
physics.

It is worth noting that the Pearsonians were not alone in failing to anticipate that spe-
cial sciences could make good use of a notion of causation that differed significantly from 
that in microphysics. During that era, many great thinkers made similar presumptions 
about a unified notion of causation in the sciences, without even realizing that this was a 
substantial assumption. For example, Russell (1912) argues that because the concept of 
causation was rarely used in mature sciences such as gravitational astronomy, the idea of 
causation is “a relic of a bygone age.” Russell does not distinguish between causation in 
physical and special sciences in his argument; he is talking about “science” in general. Rus-
sell was not alone. Norman Robert Campbell and Pierre Duhem, both physicists and phi-
losophers of science, also rejected the notion of causation as unscientific, following a simi-
lar reasoning. Given this ideological background, it was indeed challenging for any thinker 
at that time to undertake a conceptual shift from a necessitation understanding of causation 
implied in classical microphysics to a statistical notion of causation suitable for higher-level 
sciences.

7.  The Empirical Validity of Path Models

When scientists choose a statistical method, in addition to its mathematical rigour and 
conceptual tenability, they are also concerned with whether the method is empirically valid 
and reliable. In this section, I argue that the empirical reliability of path analysis could have 
been questioned —albeit implicitly. Recall that path analysis requires causal postulates and 
idealizing assumptions; these postulates and assumptions can be difficult to verify, espe-
cially in complex biological and social systems. Concerns of this type may have discouraged 
scientists from embracing path analysis; such concerns nevertheless could not be made ex-
plicit, for reasons I shall explain soon. To be clear, arguments in this section are to some ex-
tent speculative since it is difficult to find textual evidence of any scientists raising these 
concerns. However, as we shall see, concerns of this type have been more or less implied in 
Niles’s worries about the legitimacy of path diagrams.

Generally speaking, it is not uncommon in the history of science that philosophical 
or ontological concerns raised by scientists were entangled with empirical ones. For in-
stance, behind philosophical objections to chemical atomism, we find latent empirical con-
cerns about the lack of evidence for the existence of atoms. Once such empirical concerns 
were alleviated, scientists started to embrace the existence of atoms.22 Retrospectively, we 
may conjecture that many scientists rejected chemical atomism not (just) on philosophical 
grounds but (also) because of the lack of empirical evidence for atomism. It is reasonable to 
suspect that something similar happened to the initial lack of enthusiasm for path analysis: 
behind Pearsonians’ positivist skepticism about path analysis, there might have been empir-
ical concerns about the reliability of the new method as well.

22	 According to Chalmers (2019, Introduction section, para. 4), “[a]ny opposition from scientists that 
remained was removed by Jean Perrin’s experimental investigations of Brownian motion.”
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Causal relations in high-level sciences can often be complex and obscure. Wright 
(1921, p. 557) himself acknowledges the complexity of biological causation at the very be-
ginning of his paper: “In the biological sciences, especially, one often has to deal with a 
group of characteristics or conditions which are correlated because of a complex of inter-
acting, uncontrollable, and often obscure causes.” Therefore, granted that it makes sense 
to talk about causal mechanisms behind data, scientists back then were still entitled to 
worry about the empirical validity of the path models, including both the validity of the 
posited causal structures and that of the statistical models (i.e., linear equations) in which 
the causal structures are embedded (for a contemporary formulation of this concern, see 
Spanos, 2022, sect. 5.1).

We saw in section 3 that Niles was skeptical about using a path diagram to “truly rep-
resent” the causal mechanism behind data; there, I emphasized that his concern was philo-
sophical or conceptual rather than empirical. Here, I want to suggest that this does not pre-
vent Niles from having implicit empirical objections to path analysis in his mind. That is, 
the Pearsonian could have also objected to Wright by taking a step back and arguing that 
even if it made sense to talk about such a causal mechanism and isolate it from its “unman-
ageable” causal history, still, it was too difficult to guarantee that we had reliable knowledge 
about the underlying causal mechanism. Nor did we have ways of assessing whether the sta-
tistical properties of such causal mechanisms were adequately captured by the equations 
Wright used. All of this, of course, is speculative; the Pearsonian did not actually pose em-
pirical objections to Wright. But it is instructive to consider why they did not.

One possible reason why the Pearsonian did not explicitly bring up empirical objec-
tions to Wright is that these empirical concerns might have been pre-empted and over-
shadowed by their philosophical objections to path analysis: if philosophically speaking, 
there is no point in talking about the actual “data-generating mechanisms” behind the 
data, then no further empirical questions would arise. By rejecting the commitment to any 
“data-generating mechanisms”, Pearson no longer needs to worry about the empirical va-
lidity of the assumptions made in path analysis. More importantly, these empirical con-
cerns could not be clearly spelled out, let alone properly addressed, before the emergence 
of Fisher’s model-based statistics which explicitly raised the problem of model specification. 
According to Spanos (2006, p. 100; emphasis original), “statistical model specification re-
fers to the choice of a model (parameterization) arising from the probabilistic structure of 
a stochastic process ... that would render the data in question ... a truly typical realization 
thereof.” The misspecification of path models can lead to erroneous causal inferences; how-
ever, for understandable reasons, Wright did not provide a means of addressing or assessing 
this problem.

We might even speculate that Pearsonians’ adoption of a positivist philosophy of sta-
tistics was a strategic move to circumvent empirical concerns about the specification of da-
ta-generating models, given that a better way of addressing these concerns was unavailable. 
Indeed, even today, causal complexity poses serious trouble for statistical model specifica-
tion. By avoiding causation and sticking to summaries of “sense impressions” (i.e., correla-
tions in observed data), the Pearsonian could steer clear of the trouble of causal complexi-
ties and the challenge of characterizing them statistically. In particular, note that Pearson’s 
positivist philosophy exempted Pearsonians from justifying the simplifying assumptions 
(e.g., linearity) in a model-free correlation analysis. For positivists, these assumptions need 
not be veridical, and therefore, they do not even idealize anything in the world. After all, 
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in Pearson’s (1911, p. 112) view, a scientific law is just “a brief description in mental short-
hand of as wide a range as possible of the sequences of our sense-impressions.” In this case, 
simplifying assumptions in descriptive statistics could be justified instrumentally on the 
grounds of their ability to usefully summarize data. This is surely not a permanent solution 
to the problem of causal complexity and may sound like ostrichism; however, I would like 
to emphasize again that we should avoid interpreting history through a present-centred 
perspective.

In comparison, Wright’s bold choice of positing a data-generating model would 
have raised the following concern: were those causal postulates and model assumptions 
in path analysis empirically reliable? Recall that in the coat colour pattern example, 
Wright assumed background knowledge about the mechanism of inheritance, which 
came from his understanding of Mendelian genetics. But was Mendelian genetics con-
sidered reliable background knowledge in the early twentieth century? Not everyone 
would agree. In fact, Pearson was highly skeptical of Mendelian genetics, not only be-
cause he found the use of unobservable entities such as ‘factors’ (genes) unacceptable 
but also because Mendelism was considered inconsistent with Darwinism whereas Pear-
son himself was a convinced Darwinist.23 Wright also believed that Mendelian inher-
itance was linear (see Provine, 1989, p. 139), which has been found not to be the case as 
additional complexities in the mechanism of inheritance have been revealed. Moreover, 
in Wright’s path diagram, genetic factors (H) and environmental factors (E) are inde-
pendent or noninteractive causes of coat colour (O), which means that the effect of H 
on O would remain the same when the environment changes. The existence of gene-en-
vironment interaction implies that this is wrong; in different environments, the effect 
of H on O might be different (see Ottman, 1996). When gene-environment interaction 
is considered, Wright’s diagram is no longer an accurate representation of the underly-
ing causal mechanism.

To be clear, my point is not that Wright should be accused of not foreseeing things 
that were discovered decades after his invention of path analysis. Instead, my point is that, 
as a matter of fact, it was very difficult for Wright to guarantee the empirical reliability 
of path analysis because of the lack of reliable background causal knowledge back in the 
1920s. This is also in line with Fisher’s (1925) later insistence on the necessity of rand-
omized controlled experiments in making causal inference; the consideration here is that 
the reliability of randomized controlled experiments can be guaranteed —without relying 
on substantive subject matter knowledge— as long as the researcher conducts the experi-
ments properly. This has motivated Fisher to see “randomisation and experimental control 
as the only reliable way of obtaining causal knowledge” (Shipley, 2016, sect. 3.2). Again, 
this shows that there could have been legitimate empirical concerns about the validity and 
reliability of path analysis because of the method’s heavy reliance on reliable background 
causal knowledge. This point has been well made by Shipley (2016), so I will not reiterate 
it here.

23	 As a Darwinist, Pearson believed that evolution was continuous, while Mendelian genetics at his time 
held that evolution was discontinuous. For more, see Provine (2001, p. 33ff.).
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8.  Conclusion

In an attempt to provide a rational explanation for the delayed appreciation of path anal-
ysis, this paper uncovers some philosophically intriguing issues concerning the method 
and its history. This study is a demonstration that the history and philosophy of statistical 
causal inference are so intertwined that it is impossible to discuss one adequately in separa-
tion from the other. In view of this, I suggest that we take an integrated HPS approach to 
the history of causal inference. As this paper endeavours to show, taking an integrated HPS 
approach will help historians better understand the history of causal inference, especially 
regarding conceptual issues in causal inference. At the same time, I believe that a close ex-
amination of the history of causal inference will also teach philosophers of causation valu-
able lessons. While this paper does not demonstrate the latter in detail, here is a quick ex-
ample of how this might work: the history of path analysis can make an excellent case study 
for philosophers of science to investigate the role of ontological or philosophical assump-
tions in scientific and methodological practices.
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