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HOW WE LEARNED TO STOP WORRYING AND LOVE TONK 

(Cómo aprendimos a dejar de preocuparnos y a amar a tonk) 
 

Luis Estrada-González 
Institute for Philosophical Research, UNAM 

Christian Romero-Rodríguez* 
Institute for Philosophical Research, UNAM 

 
 
ABSTRACT: According to common wisdom, the connective tonk defined by Prior trivializes any theory 
that contains it. However, it should not be forgotten that whether an argument holds or not depends to 
a large extent on the underlying notion of logical consequence. Logical consequence is usually assumed 
to be Tarskian, that is, reflexive, transitive and monotonic. However, Belnap had already conjectured that 
tonk might not be so problematic in a non-transitive logic, which Cook finally proved in 2005. In this 
paper we improve on Cook’s result in two ways: our hypothesis is simpler (namely, we use fewer 
interpretations than he did and we do not rely on a disjunctive consequence relation) and it is not ad hoc 
(namely, our working consequence relation is not designed merely to avoid triviality under tonk).  
Keywords: tonk, Dunn semantics, non-Tarskian logical consequence, non-transitivity 
 
RESUMEN: Según la sabiduría popular, la conectiva tonk definida por Prior trivializa cualquier teoría 
que la incluya. Sin embargo, no hay que olvidar que, si un argumento es lógicamente válido o no, depende 
en buena medida de la noción de consecuencia lógica subyacente. Casi siempre se asume que la 
consecuencia lógica es tarskiana, esto es, que es reflexiva, transitiva y monotónica. Sin embargo, Belnap 
había conjeturado que tonk podría no ser tan problemática en una lógica no transitiva, cosa que finalmente 
probó Cook en 2005. En este artículo mejoramos el resultado de Cook en dos aspectos: nuestra hipótesis 
es más simple (a saber, usamos menos interpretaciones que él y no usamos una relación de consecuencia 
lógica disyuntiva en el definiendum) y no es ad hoc (a saber, nuestra relación de consecuencia lógica no está 
definida exclusivamente para evitar la trivialidad).  
Palabras clave: tonk, semántica de Dunn, consecuencia lógica no tarskiana, no transitividad 

 
Short summary: Belnap highlighted the role of Transitivity in Prior's triviality proof involving tonk, but 
a non-trivial, non-transitive logic with tonk was never developed until Cook's proposal with four 
interpretations and a disjunctive consequence relation. We improve on that proposal: we show that only 
three interpretations suffice and that a non-disjunctive consequence relation is not required. 
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Introduction 

In The runabout inference ticket, Prior (1960) introduced the binary connective tonk. Prior defines 
tonk by stipulating its introduction and elimination rules. The problem with tonk is that its 
incorporation into certain theories can trivialize them. It is enough to have tonk and a transitive 
logical consequence relation for it to be possible to conclude any formula. 

In Tonk, Plonk and Plink, Belnap (1962) noted that the introduction and elimination rules of tonk 
could be compatible with other types of logical consequence relations. That is, the trivialising 
effects attributed to tonk should only be restricted to transitive logical consequence relations. 
Unfortunately, Belnap never provided a non-transitive logic for this purpose. Many years later, 
in What’s wrong with Tonk(?), Cook (2005) introduced a non-transitive logic for tonk, which he 
called Tonk Logic (TL). Cook takes the language of First Degree Entailment (FDE) as a starting 
point, expands it to include tonk and defines a new logical consequence relation. In the non-
transitive logic presented by Cook, tonk is just another connective in the language and does not 
trivialize. 

However, despite Cook’s best efforts, his proposal seems contrived for two reasons. The first is 
that it requires four admissible interpretations to express tonk; the second is that the notion of 
logical consequence used by him is disjunctive and does not seem to be a minimal modification 
of the Tarskian notion of logical consequence, so it requires too much conceptual motivation. 
Here we present a proposal that does not have these problems: we show that three admissible 
interpretations are sufficient to express tonk, and we use a notion of logical consequence that is 
not disjunctive and is more natural than Cook’s in the sense that, when used in contexts with 
only two admissible interpretations, it is coextensive with the Tarskian notion of logical 
consequence. 

The plan for this paper is as follows. In the first section, we introduce tonk and the assumptions 
necessary for its trivialisation. We also present Barceló’s (2008) method for converting (bivalent) 
truth tables into derivation rules (and vice versa). This method is useful for us to present the 
evaluation conditions of tonk. In the second section, we present Cook’s TL logic and two 
objections to his proposal. In the third section, we show that there is a way in which tonk can 
validate Prior’s rules without appealing to a logical consequence relation, which may seem 
artificial. Finally, we present a method for identifying what kind of connective tonk is, to 
determine that it is both a conjunction and a disjunction. 
 
1. The bomb 

Prior (1960) argued that a meaningful connective cannot be specified simply by its introduction 
and elimination rules. To illustrate his thesis, he proposed a binary connective called ‘tonk’, 
represented here by ‘≸’, with the following introduction and elimination rules, where A and B 
are any formulas of the language: 
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tonk Introduction (I≸) 

A ⊢ A≸B 

B ⊢ A≸B 

tonk Elimination (E≸) 

A≸B ⊢ A 

A≸B ⊢ B 

The problem with tonk is that it seems to trivialize any theory T in which it appears. Consider 
the following proof: 

1. A ⊢T A≸B  I≸ 

2. A≸B ⊢T B  E≸ 

3. A ⊢T B  1, 2 Transitivity of ⊢T 

The conclusion expresses that, if a theory T includes tonk, any formula of the language implies 
any other. 

For many, including Prior himself, the lesson of tonk’s case is that for a connective to be 
meaningful it must correspond to a pre-theoretical meaning which cannot simply be captured in 
a system of rules. Some, like Stevenson (1961) in Roundabout the runabout inference-ticket, argue that 
such a pre-theoretical meaning can be captured, at least to a satisfactory extent, by evaluation 
conditions such as those underlying truth tables. If this is so, then to show that there can be no 
pre-theoretical meaning associated with tonk, it would suffice to show that tonk cannot be 
evaluated, that it has conditions that cannot be satisfied. Stevenson shows that tonk has classically 
impossible conditions to satisfy, but here we want to present an alternative argument which is 
clearer to us. 

Axel Barceló (2008) developed a method for converting two-valued truth tables into natural 
deduction rules (NDR) with multiple-conclusions1 and vice versa, which is particularly useful for 
showing the peculiarities of the evaluation conditions required by tonk. Let us first note that in a 
multiple-conclusion framework, both rules for tonk can be simplified: 

Tonk Introduction (I≸)   Tonk Elimination (E≸) 

A, B ⊢ A≸B     A≸B ⊢ A, B 

We now explain Barceló’s method. Let ©( A1, . . . , An) be a formula whose main connective is 
the n-ary connective ©. Then  

I. ©(A1, . . . , An) is a conclusion in an NDR if and only if it is true. 

II. ©(A1, . . . , An) is a premise in an NDR if and only if it is false. 

 
1  For more on multiple-conclusions, see Shoesmith and Smiley (1978). 
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III. Ak is a premise in an NDR if and only if it is true. 

IV.  Ak is a conclusion in an NDR if and only if it is false. 

Where 1≤k≤n. 

For example, consider the truth table of the extensional conditional (→), where truth and falsity 
are represented by 1 and 0. 
 

A B A→ B 
1 1 1 
1 0 0 
0 1 1 
0 0 1 

 

From each line of the table, we can obtain an NDR. In descending order, the four rules are as 
follows: 

1. A, B ⊢ L A→ B 
2. A, A→ B ⊢ L B 
3. B ⊢ L A→ B, A 
4. ⊢ L A→ B, A, B 

In the first case, by (III), A and B are premises because they are both true. By (I), A→ B is a 
conclusion because it is true. In the second case, by (III), A is a premise because it is true. By 
(II), A→B is a premise because it is false. By (IV), B is a conclusion because it is false. The same 
can be done with 3 and 4.  

The evaluation conditions obtained from Prior’s rules for tonk, using Barceló’s method, are as 
follows: 

A≸B is true if and only if A is true. 

A≸B is true if and only if B is true 

A≸B is false if and only if A is false 

A≸B is false if and only if B is false 

Or, rewriting: 

A≸B is true if and only if A is true or B is true. 

A≸B is false if and only if A is false or B is false 

Here we can clearly see that this connective is undefinable in classical logic, since it requires 
interpretations that are not admissible in a usual two-valued semantics. Suppose A is true and B 
is false: according to the evaluation conditions just given, A≸B is true (since A is true) and false 
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(since B is false). The same result is obtained by assuming that A is false and B is true. The table 
for tonk would look like this: 

 

A≸B 1 0 

1 1 1,0 

0 1,0 0 

 

One might ask whether this is not a semantics-dependent rather than a logic-dependent result; 
in other words, one might ask whether tonk is not definable in some other semantics for classical 
logic. The short answer is ‘no’: there is no semantics S which has the following characteristics: 

- S is functionally complete using a classical metatheory. 

- A connective with homophonic evaluation conditions for tonk is definable in S. 

- The Prior rules for tonk are valid under S. 

- The notion of logical validity is Tarskian. 

So far, the bomb: tonk trivializes any theory with a semantics S that has the conditions just stated. 

In On three-valued presentations of classical logic, Da Ré, Szmuc, Chemla and Egré (2023) introduced 
some logics, with three-valued semantics, which could be considered as presentations of classical 
logic. However, some of these logics are not reflexive or transitive. Moreover, some of these 
semantics are not functionally complete. Therefore, even if connectives such as tonk are definable 
in some of these semantics (such as the tonk we will present in the next section), they do not 
satisfy the requirement of being Tarskian or of being functionally complete enough to constitute 
a counterexample to what has been said above.2 
 
2. How we stopped worrying 

As we have seen, A≸B is true and false if one of its components is true and the other is false. 
For tonk to be expressible, then, at least three admissible interpretations are needed for any 
formula A: A is (only) true, A is (only) false, and A is both true and false. Fortunately for us, 

 
2  In Formalization of Logic, Carnap (1943) presented non-normal semantics for classical logic. In these semantics, 

interpretations are considered non-normal because, according to Church (1943, p.493), they “contravene in some 
way the usual interpretation of classical truth tables”. Some ways of “contravening” the usual semantics are to 
increase the number of values or the number of interpretations, or to force non-equivalence between true 
(respectively false) and non-false (respectively non-true). For example, in Carnap’s non-normal semantics, in the 
evaluation conditions of negation (expressed here with ‘N’), it is either the case that, i) NA is true if and only if A 
is true, or ii) NA is false if and only if A is not false. Tables compatible with these non-normal semantics can also 
be found in Church (1953). However, these semantics are not functionally complete either, so they do not provide 
a counterexample to the above. Some criticisms and comments on Carnap’s proposal can be found in the 
aforementioned Church (1944). 
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and for tonk, such semantics are better known and more workable than they were in Stevenson’s 
time. 

Before presenting our proposal, we present Cook’s (2005) proposal. To do this, it is necessary 
to first introduce Dunn semantics. Dunn semantics allows us to relate, not necessarily in a 
functional way, propositional variables to only two truth values, namely, truth and falsity. See 
more in Dunn (1976). Despite the two-valued nature of the semantics, we can have different 
sets of admissible interpretations to represent different logics. Omori and Sano (2015) proposed 
a general method to transform truth tables with up to four admissible interpretations into truth 
and falsity conditions. In the following, we present Cook’s Tonk Logic (TL), which uses a Dunn 
two-valued semantics. 

Let L be a formal language for TL with a set of formulas constructed in the usual way, from a 
set of propositional variables VAR = {p1,…, pn} with the connectives ~, ∧, ∨ and ⊗, in which 
‘⊗’ is the symbol Cook uses for tonk.3 We will use the letters ‘A’, ‘B’, ‘C’,..., of the Latin alphabet 
as arbitrary formulas of L, and the letters ‘Γ’, ‘Δ’,..., of the Greek alphabet as sets of formulas. 

An interpretation ‘i’ for L is a relation between atomic formulas and the truth values (1 and 0), 
such that we have the following ways:4 

• pi is true but not false, represented by ‘1∈i(pi) and 0∉i(pi)’; more briefly, i(pi)={1}; 
• pi ᵢ is true but also false, represented by ‘1∈i(pi) and 0∈i(pi)’; more briefly, i(pi)={1, 0}; 
• pi is neither true nor false, represented by ‘1∉i(pi) and 0∉i(pi)’; more briefly, i(pi)={  }; 
• pi is false but not true, represented by ‘0∈i(pi) and 1∉i(pi)’; more briefly, i(pi)={0}. 

The interpretations extend to evaluations for all formulas according to the following evaluation 
conditions5: 

1∈i(~A) iff 0∈i(A) 

0∈i(~A) iff 1∈i(A) 

1∈i(A∧B) iff 1∈i(A) and 1∈i(B) 

0∈i(A∧B) iff 0∈i(A) or 0∈i(B) 

 
3  There is a conditional A→B which is definable as ~A∨B; and a biconditional A ↔ B which is definable as (A → 

B) ∧ (B → A). 
4  We have chosen to work with a Dunn-style bivalent semantics, which is characterized by having only two truth 

values. Unlike other approaches, the evaluation here is not restricted to a function but is a relation in general. This 
allows for the consideration of all four possible interpretations, even with only two truth values. The interpretation 
i should not be understood as a function, is used as relation that assigns sets of values to formulas. So the notation 
i(p)={1} does not presuppose a standard functional interpretation. We are not assuming a classical set theoretic 
metatheory. Many three-valued and many-valued logics can be presented using a Dunn-style bivalent semantics. 
Presenting them in this way has significant advantages, as it avoids engagement in debates about the ontological or 
semantic status of other kinds of values (such as i, b, n, etc.), and allows us to bypass discussions concerning whether 
such entities genuinely count as truth values. Since this issue goes beyond the scope of the present article, we refer 
the reader to Estrada-González (2019) and (2022) for a more detailed treatment.  

5  We use the same notation for interpretations and evaluations.  
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1∈i(A∨B) iff 1∈i(A) or 1∈i(B) 

0∈i(A∨B) iff 0∈i(A) and 0∈i(B) 

1∈i(A⊗B) iff 1∈i(A)  

0∈i(A⊗B) iff 0∈i(B) 

The evaluation conditions can be presented in tabular form as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The logical consequence relation of TL is the following: Let A and Γ be a formula and a set of 
formulas of L, respectively. A is a logical consequence of Γ in TL, Γ ⊨TL A, if and only if, either, 
for each interpretation i, if 1∈i(B), for all B∈ Γ, 1∈i(A); or, for each interpretation i, if 0∈i(A), 
0∈i(B) for some B∈Γ. According to TL’s definition of logical consequence, an argument is 
logically valid if and only if either: either truth is preserved from premises to conclusion in every 
interpretation (truth-preserving), or falsity is preserved from conclusion to premises, also in 
every interpretation (falsity-preserving). 

Transitivity is not valid in TL: 

If A ⊨L B and B ⊨L C, then A ⊨L C 

A∨B {1} {1,0} { } {0} 

{1} {1} {1} {1} {1} 

{1,0} {1} {1,0} {1} {1,0} 

{ } {1} {1} { } { } 

{0} {1} {1,0} { } {0} 

~A A 

{0} {1} 

{1,0} {1,0} 

{ } { } 

{1} {0} 

A∧B {1} {1,0} { } {0} 

{1} {1} {1,0} { } {0} 

{1,0} {1,0} {1,0} {0} {0} 

{ } { } {0} { } {0} 

{0} {0} {0} {0} {0} 

A⊗B {1} {1,0} { } {0} 

{1} {1} {1,0} {1} {1,0} 

{1,0} {1} {1,0} {1} {1,0} 

{ } { } {0} { } {0} 

{0} { } {0} { } {0} 
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To give a counterexample to Transitivity is to show that A ⊨L B and B ⊨L C are valid arguments, 
while A ⊨L C is an invalid argument. Specifically, using tonk, the following argument is invalid: 

If A ⊨TL A⊗B and A⊗B ⊨TL B, then A ⊨TL B 

Using the tonk table, we can see that if A is true, then A⊗B is true, so A ⊨TL A⊗B is a valid 
argument. It can also be seen that if B is false, then A⊗B is false, so A⊗B ⊨TL B is valid. 
However, A ⊨TL B is not valid because it preserves neither the truth of the premises to the 
conclusion nor the falsity of the conclusion to the premises. For example, if i(A)={1} and 
i(B)={0}. A consequence of TL being a non-transitive logic is that Prior’s triviality proof does 
not hold for it. Thus Cook ends his attempt to claim tonk as a meaningful connective. 

However, and despite Cook’s best efforts, his proposal seems contrived for two reasons. The 
first is that it requires four admissible interpretations to express tonk; the second is that the notion 
of logical consequence used by him is disjunctive. We begin by discussing the second reason. It 
seems to us that defining a disjunctive logical consequence is not a minimal modification of the 
Tarskian notion of logical consequence because it requires too much conceptual motivation not 
to seem ad hoc. Let us recall the Tarskian notion of logical consequence: 

• An argument Γ ⊨L A is logically valid if and only if, for each interpretation i, if 1∈i(B), for 
all B∈Γ, 1∈i(A).  

The definition of logical consequence of TL can be obtained from the Tarskian notion of logical 
consequence by putting its definiens in disjunction with that of the following logical consequence 
relation: 

• An argument Γ ⊨L A is logically valid if and only if, for each interpretation i, if 0∈i(A), 
1∈i(B) for some B∈Γ. 

Cook does not give an argument in favor of his disjunctive logical consequence relation because 
he considers that it is not too “extravagant or inconceivable” (Cook, 2005, p.221). According to 
Cook, accepting his consequence relation implies that “there is no reason to prefer the Truth-
Preserving Consequence to the Falsity-Preserving Consequence, or vice versa” (Cook, 2005, 
p.222). Indeed, when classical logic is presented, for example, one can use either the Truth 
Preservation Consequence or the Falsity Preservation Consequence interchangeably, since both 
determine the same collections of valid and invalid arguments. From the classical perspective 
there is thus no reason to prefer one over the other.  

There is a reason why we consider the disjunctive logical consequence relation to be an ad hoc 
hypothesis, namely that the preference of the disjunctive logical consequence definition over 
one that uses only one of the two disjuncts depends entirely on the presence of tonk in the 
language. Say that a disjunctive logical consequence relation D is redundant if and only if there is 
a logical consequence relation N in whose definiens only one of the disjuncts of the definiens of D 
is needed, and both N and D characterize the same arguments (based on a semantics S). 
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In logics such as FDE or classical logic, the disjunctive logical consequence relation characterizes 
exactly the same arguments as the logical consequence relations based on any of the disjuncts of 
the disjunctive relation. In TL, the logical consequence relation is not redundant, some 
arguments are valid thanks to one of the disjuncts, but others are valid thanks to the other 
disjunct (as they would be invalid according to the first one). For example, A≸B ⊢T B is a valid 
argument with Falsity Preservation, but invalid with Truth Preservation. However, if tonk were 
not part of the language of TL, as in FDE, the logical consequence relation would be redundant. 
So, the basis of the disjunctive definition has no justification independent of the possibility of 
defining tonk. 

As in other fields, ad hoc hypotheses in logic are questionable because they are introduced for the 
sole purpose of resolving a discrepancy between the theory and a particular result. Ad hoc 
hypotheses, such as the disjunctive logical consequence relation, do not extend the scope of the 
theory or its ability to solve other logical problems. Here we argue that three admissible 
interpretations are sufficient to express tonk, and we use a notion of logical consequence which 
is not disjunctive, and therefore its justification is not based on the fact that it allows tonk to be 
defined. 

Let us recall Prior’s argument: 

1. A ⊢T A≸B  I≸ 

2. A≸B ⊢T B  E≸ 

3. A ⊢T B  1, 2 Transitivity of ⊢T 

Prior’s rules for tonk do not in themselves imply triviality, as Belnap (1962) had already pointed 
out. The conclusion depends crucially on the validity of Transitivity of ⊢T and not only on Prior’s 
rules. So it seems that there are at least two ways to avoid the triviality result that every formula 
implies every other formula, either one of Prior’s rules must be invalid, or Transitivity must be 
invalid.  

Let us recall the evaluation conditions obtained by Barceló’s method: 

A≸B is true if and only if A is true or B is true. 

A≸B is false if and only if A is false or B is false 

The table for tonk would be as follows, using only three admissible interpretations: 

 

A≸B {1} {1, 0} {0} 

{1} {1} {1, 0} {1, 0} 

{1,0} {1, 0} {1, 0} {1, 0} 

{0} {1, 0} {1, 0} {0} 
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However, it seems that, in this semantics, the road to non-transitivity is closed, since the notion 
of Tarskian logical consequence is transitive, and that rather the rule E≸ is invalid. In fact, 
consider the interpretation in which A is {1} and B is {0}. In this case, the premise of A≸B ⊢T 
B is true but the conclusion is not. On the other hand, the way to define Cook’s tonk using only 
these three admissible interpretations is also closed: Cook’s tonk (⊗) is not true and not false 
even if A is false and B is true. That is, i(A⊗B) = {  } when i(A) ={0} and i(B) = {1}. This is 
not the case for ≸. Using the same evaluation conditions of ≸, we can also define tonk for 
semantics with four admissible interpretations: 

 

 

 

 

 

 

 

 
 

A corollary of this is that Dunn semantics allows us to identify at least two tonk connectives. The 
first, ≸p, is defined by Prior-style introduction and elimination rules; the second, ≸m, by 
evaluation conditions.6 In general, these are different connectives, for the rule E≸ may not hold 
for ≸m, while the connective for which both E≸ and I≸ hold has different evaluation conditions 
than ≸m. 

According to Barceló’s method, tonk is a connective that has the truth condition of a disjunction 
and the falsity condition of a conjunction. However, ⊗ has neither the truth-condition of a 
disjunction nor the falsity-condition of a conjunction. ⊗ recovers only part of the evaluation 
conditions of conjunction and disjunction. For this reason, our tonk connective (≸m according 
to the notation of the previous paragraph) is not the same connective as Cook’s connective (⊗). 
Cook’s ⊗ connective is designed on the basis of the minimal requirements that introduction 
and elimination rules must fulfil in order to trivialize a logic such as the classical one. For this 
reason, we consider ⊗ to be more similar to ≸p than to ≸m. 

Something very similar occurs with the tonk defined in Ripley (2015). In that work, tonk is 
introduced through sequent rules, without reference to evaluation conditions. Within that 
approach, sequents are taken to specify aspects of the meaning of tonk. The proposed rules are 
as follows: 

 
6  In a different approach, this distinction between tonks was also explored by Buacar (2018) and Teijeiro (2020). 

A≸B {1} {1,0} { } {0} 

{1} {1} {1,0} {1} {1,0} 

{1,0} {1,0} {1,0} {1,0} {1,0} 

{ } {1} {1,0} { } {0} 

{0} {1,0} {1,0} {0} {0} 
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      Γ ⊢ A, Δ            Γ, B ⊢ Δ 

tonkR ------------------    tonkL ------------------ 

  Γ ⊢ A tonk B, Δ     Γ, A tonk B ⊢ Δ 

To illustrate why tonk is problematic, Ripley argues that the Cut rule plays a central role in the 
derivation of triviality. In doing so, she opens the way for investigations such as ours, which not 
only aim to diagnose the problem, but also to provide a concrete tool capable of accomplishing 
the work that Ripley had already outlined. On the other hand, using the method proposed by 
Béziau (2001, p. 374), it is possible to extract the evaluation conditions of Ripley’s tonk from its 
associated sequent rules. These conditions match exactly those of the ⊗ connective. Ripley 
explores the possibility of having her sequent rules validate Prior’s original principles. This is 
why her approach resembles Cook’s more closely. Therefore, Ripley’s tonk is more closely related 
to ≸p than to ≸m. In this sense, our proposal can be seen as extending Ripley’s result by exploring 
alternative ways of modeling a connective like tonk. 

The question now is whether there is any way in which ≸m can validate Prior’s rules E≸ and I≸, 
that is, whether we can have it all: a tonk-like connective for which Prior’s rules are valid and 
which is described model-theoretically by the truth condition of a disjunction and the falsity 
condition of a conjunction. The answer is yes, and the simplest way to obtain it is by means of 
a non-transitive notion of logical validity. Unlike Cook and Ripley’s proposals, our approach 
extracts tonk directly from evaluation conditions. We have shown that extraction alone does not 
ensure the validity of Prior’s rules; additional steps are necessary. Ripley and Cook begin 
oppositely, assuming the validity of the rules from the outset and developing formal mechanisms 
to avoid triviality. Their versions of tonk preserve the truth of Prior’s rules within non-trivial 
frameworks, whereas our proposal does not start from this assumption. Through Barceló’s 
method, we show that a non-transitive context remains necessary for these rules to be valid. 

 

3. How we learned to love tonk 

One problem with classical logic is that it identifies many properties that perhaps should not be 
identified. This has been repeated many times for the case of contradiction and triviality, for 
example, as well as for the pairs falsity/non-truth and truth/non-falsity, which is sufficiently 
clear in the case of Dunn semantics. Precisely the distinction between falsity and non-truth, on 
the one hand, and between truth and non-falsity, on the other, makes it possible to distinguish 
in turn between different notions of logical consequence which are equivalent in classical logic: 

tt: The argument Γ ⊨L Δ is logically valid if and only if, for all interpretation, if the 
premises are not only false, at least one conclusion is not only false either. 

ts: The argument Γ ⊨L Δ is logically valid if and only if, for all interpretation, if the 
premises are not only false, at least one conclusion is only true. 
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st:  The argument Γ ⊨L Δ is logically valid if and only if, for all interpretation, if the 
premises are only true, at least one conclusion is not only false. 

ss: The argument Γ ⊨L Δ is logically valid if and only if, for all interpretation, if the 
premises are only true, at least one conclusion is also true. 

The properties that premises and conclusions must fulfil in a logically valid argument are called 
‘standards’ (see more in Chemla et al. 2017, p. 2198). In the logical consequence relations tt and 
ss, the standards of premises and conclusions are the same; in ts and st, they are different, which 
is why these logical consequence relations are called ‘mixed’. For more on tt, ss, ts and st, see 
Cobreros et al. (2012a). For more on mixed logics, see Cobreros et al. (2012b). We have provided 
the definition of these logical consequence relations, and given the framework of Dunn 
semantics, they are useful for defining a formal consequence relation when working with three 
or four interpretations. The only variation lies in the interpretations considered (specifically, what 
is understood as tolerant). 

For example, consider the admissible interpretations for K3, LP, and FDE. In these cases, the 
interpretations to be considered for an argument to be st-valid are as follows: 

• K3: {{1}{ }{0}} 
Standard for premises: {1} 
Standard for conclusion: {1} and { } 

• LP: {{1}{1,0}{0}} 
Standard for premises: {1} 
Standard for conclusion: {1} and {1,0} 

• FDE: {{1}{1,0}, { }{0}} 
Standard for premises: {1} 
Standard for conclusion: {1}, { }, and {1,0} 

When working with three values, as in some semantic presentations of K3 and LP, it is common 
to assume that there are different interpretations of the third value. In K3, this value is typically 
interpreted as “neither true nor false”, while in LP, it is interpreted as “both true and false”. 
Now, when considering mixed consequence relations (such as the st and ts relations), premises 
and conclusions may treat this additional value differently, which might lead one to think that 
two different readings of the same value are being used. As a result, it might seem that there are 
not just three, but actually four values in play. 

However, this objection, which could be extended to claim that four values or interpretations 
are actually being used, does not apply in our case. The apparent difference in how the 
intermediate value is treated between premises and conclusion is not due to multiple readings of 
that value, but rather to the differentiated use of strict and tolerant standards in mixed 
consequence relations. In other words, even though we are working with three interpretations, 
there is no third value in our semantics that admits multiple interpretations. Thus, it is clear that 
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there are semantic presentations of the st and ts consequence relations that, at a conceptual level, 
do not require assuming two readings of the intermediate value.7 

In classical logic, the direction in which the standards are connected is also indistinct, i.e. it does 
not matter whether the connection of standards goes from premises to conclusions or from 
conclusions to premises. In the four relationships above, the connection is from premises to 
conclusions. But in contexts in which a distinction is made either between truth and non-falsity 
or between falsity and non-truth, it is also important to distinguish the direction of connection 
of standards (see more in Wansing and Shramko, 2008).8 Thus, we have the following notions 
of logical consequence: 

←ff: The argument Γ ⊨L Δ is logically valid if and only if, for all interpretation, if at 
least one conclusion is only false, the premises are also false. 

←fnt: The argument Γ ⊨L Δ is logically valid if and only if, for all interpretation, if at 
least one conclusion is not only true, the premises are only false. 

←ntf:  The argument Γ ⊨L Δ is logically valid if and only if, for all interpretation, if at 
least one conclusion is only false, the premises are not only true. 

←ntnt: The argument Γ ⊨L Δ is logically valid if and only if, for all interpretation, if at 
least one conclusion is not true, the premises are not true either. 

Theorem. I≸ and E≸ evaluated with ←ntf are valid, but Transitivity is not. 

Proof. Suppose that A≸B is not true, that is, 1∉i(A≸B). This implies, in the semantics we are 
working on, that it is false, i.e., that 0∈i(A≸B). But if 0∈i(A≸B) and 1∉i(A≸B) then, by the 
evaluation conditions of A≸B, both 0∈i(A) and 1∉i(A), and 0∈i(B) and 1∉i(B). Thus, for any 
interpretation i, if 1∉i(A≸B), 0∈i(A) and 0∈i(B). But this means that A ⊢T A≸B and B ⊢T A≸B 
are ←ntf -valid. 

Suppose now that A is not true, that is, 1∉i(A). This implies, in the semantics we are working 
on, that it is false, i.e., that 0∈i(A). Then, by the evaluation conditions of A≸B, 0∈i(A≸B). 
Therefore, since i was arbitrary, A≸B ⊢T A is ←ntf -valid. The reasoning for A≸B ⊢T B is the 
same, mutatis mutandis. 

Finally, there is an interpretation that shows that A ⊢T B is not ←ntf-valid, namely, i(A) = {1} 
and i(B) = {0}. Thus, while A ⊢T A≸B and A≸B ⊢T B are ←ntf-valid, A ⊢T B is not ←ntf-valid. 
              □ 

 
7 For example, in the presentation of the four definitions of mixed logical consequence proposed by Cobreros et al 

(2012a), more than two truth values are employed. This raises the question, as one of the reviewers suggests, whether 
three or four distinct values are being used. 

8 As a reviewer correctly observed, in classical contexts where Transitivity is a valid meta-argument, the relations 
tt, ts, st, and ss are coextensional with ←ff, ←fnt, ←ntf, and ←ntnt respectively. However, these distinctions are 
meaningful only in metatheories where Transitivity need not hold. Under a classical metatheory some definitions 
are coextensive. 
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Considering the language of FDE and the consequence relation ←ntf, we obtain the same valid 
arguments as those in ST logic (for more information, see Barrio, Rosenblatt, and Tajer (2015)).9 
In the resulting logic, Transitivity does not hold. However, all logical truths of classical logic10 
and classically valid arguments of the form Γ ⊢L A (though not all meta-arguments, i.e., 
arguments of the form “if Γ ⊢L A then Δ ⊢L B”; Transitivity is an example of this) do hold.11 
One advantage of adopting ←ntf is that it is not disjunctive, so with or without tonk, it does not 
seem ad hoc. Supposing the validity of certain arguments, such as Transitivity, disjunctive and 
non-disjunctive logical consequence relations may be coextensive, as we will see later. However, 
one of the lessons we learn from tackling this problem is that presentation matters. In other 
words, the way we define logical consequence relations is important, so that our results do not 
appear ad hoc. Finally, we also show here that ←ntf is useful so that tonk does not lead to triviality 
and can be considered as a meaningful connective. 

Before concluding, a crucial point to address is the apparent equivalence between disjunctive 
and non-disjunctive definitions of logical consequence. A reviewer has suggested there would 
be no substantial differences between, for example, Cook’s definition (using disjunctive clauses) 
and our non-disjunctive proposal, since both could be equivalent in a classical framework. 
However, this alleged equivalence depends on some arguments that are invalid in the logical 
consequence relations we analyze, such as st or ←ntf. To clarify this, let us first consider the 
structure of the definitions. 

Recall TL’s disjunctive definition of logical consequence. A is a logical consequence of Γ in TL, 
Γ ⊨TL A, if and only if either: for every interpretation i, if 1 ∈ i (B) for all B ∈ Γ, then 1 ∈ i (A); 
or for every interpretation i, if 0 ∈ i (A), then 0 ∈ i (B) for some B ∈ Γ. Let A be ‘X is true’; B ‘Y 
is true’; C ‘Y is false’; and D ‘X is false’. TL’s logical consequence relation could be (A → B) ∨ 
(C → D). Now, consider the following equivalence proof between the two notions: 

I. (A → B) ∨ (C → D)    (TL's logical consequence) 
II. (~A∨B) ∨ (~C∨D)    (I., Extensionality)  

III. (~A∨D) ∨ (B∨~C)    (II., Commutativity and Associativity)  
IV. ~ (~A∨D) → (B∨~C)    (III., Extensionality) 
V. (A∧~D) → (B∨~C)    (IV., de Morgan and Double Negation) 

Considering the meanings of A, B, C, and D, logical consequence can be read as 

st:  The argument Γ ⊨L Δ is logically valid if and only if, for every interpretation, if 
the premises are only true, the conclusions are not only false. 

 
9 Whether the fact that they have exactly the same collections of valid and invalid arguments is enough to say that 

they are the same logic is something we will not discuss here. 
10 A formula A is a logical truth (in a logic L presented under a semantics S) if and only if, for each interpretation i (of 

S), 1∈ i(A).  
11 As one reviewer pointed out, the resulting logic does not share the same meta-arguments only if we assume local 

validity. If we assume global validity, it also shares the same meta-arguments of classical logic and ST. For more 
information, see Barrio, Rosenblatt, and Tajer (2015). 
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The proof of equivalence requires the following assumptions: 

• A→B ⊣ L ⊢ ~A∨B     Extensionality 
• A∨B ⊢L B∨C     Commutativity 
• (A∨B)∨C ⊢L A∨(B∨C)    Associativity  
• ~ (~A∨B) ⊢L (A∧~B)    de Morgan 
• ~~A⊢L  A      Double Negation  
• If A⊢L B and B⊢L C then A⊢L C   Transitivity 

While these definitions are equivalent in a classical metalanguage, such equivalence presupposes 
the validity of arguments, like Transitivity, that are invalid in the logical consequence relations 
we have outlined. Thus, the equivalence between disjunctive and non-disjunctive forms, which 
critically depends on this property. Finally, although the proof of the previous theorem in the 
metalanguage uses Transitivity, this does not guarantee that the defined relations (such as ←ntf) 
inherit the same property. In fact, the non-transitivity of ←ntf and st clearly exemplifies how we 
typically use a slightly stronger logic in the metatheory. In summary, the equivalence between 
disjunctive and non-disjunctive definitions appears to depend on Transitivity, at least in the 
standard proofs or frameworks considered here. However, it remains an open question whether 
such equivalence could be established independently of Transitivity. 

 

4. Bonus 

Mixed connectives such as tonk raise the question of whether they are of the same type as some 
of the connectives that were used to define them or whether they are of a new type. In the case 
of tonk, the question is whether it is a disjunction, a conjunction, both or neither, or perhaps it 
is a completely new type of connective. However, how do you know whether a connective is, 
say, a disjunction? 

Before answering this question, we need to define some concepts. Following Estrada-González 
and Nicolás-Francisco (2024), in a Dunn semantics, an expression of the form vi∈(A) with vi∈{1, 
0} is called a Dunn atom. Let vi∈(A) be a Dunn atom: we will say that vj∉i(A), with vi,vj ∈{1, 0} 
and vi ≠ vj, is its Boolean counterpart. For example, the following cases (considered horizontally) are 
Boolean counterparts of each other: 

0∈i(~A)   1∉i(~A) 

1∈i(A∨B)   0∉i(A∨B) 

A tweaking is a modification in the evaluation conditions of a connective in which the only 
changes consist of substituting Dunn atoms for their Boolean counterparts. 

Let us now consider the logic FDE. FDE can be presented by means of a language L, 
constructed in the usual way, with the following connectives: ~, ∧, ∨. The evaluation conditions 
and tables are the same as those presented in Section 2. The logical consequence relation of 
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FDE is as follows: Let A and Γ be a formula and a set of formulas of L, respectively. A is a 
logical consequence of Γ in FDE, Γ⊨FDE A, if and only if, for every interpretation i, if 1∈i(B), 
for all B∈ Γ, 1∈i(A).  

Estrada-González and Nicolás-Francisco (2024) say that a connective ⊚ is a classically clear case 
of negation/conjunction/disjunction/conditional, if: 

1. The evaluation conditions of ⊚ are the negation/conjunction/disjunction/conditional 
conditions of FDE; or 

2. The evaluation conditions of ⊚ are obtained from a tweaking of the evaluation conditions 
of FDE. 

A connective ⊛ is a negation/conjunction/disjunction/conditional if and only if there is a clear case ⊚ 
of negation/conjunction/disjunction/disjunction/conditional such that: 

⊚(A1,…, An) ⊣L⊢ ⊛ (A1,…, An) 

We believe that few would doubt that the connectives ∨ and ∧ are classically clear cases of 
disjunction and conjunction, respectively. Although the tables with four interpretations look 
different from the classical ones, the evaluation conditions of ∨ and ∧ are the same. We can state 
that the disjunction ∨ and the conjunction ∧ satisfy 1. However, the evaluation conditions of ≸ 
do not correspond to those of any FDE connective and cannot be obtained by tweaking its 
evaluation conditions. Then ∨ and ∧ are classically clear connectives, unlike ≸. 

Now let us consider a version of the FDE disjunction with the three admissible interpretations 
{1}, {1,0},{0}12, i.e., 

A∨B {1} {1, 0} {0} 

{1} {1} {1} {1} 

{1,0} {1} {1, 0} {1, 0} 

{0} {1} {1, 0} {0} 

 

It is easy to see that the following arguments are ←ntf valid 

A≸B ⊢←ntf A∨B   and  A∨B ⊢←ntf A≸B 

That is, it holds that 

A≸B ⊣←ntf⊢ A∨B 

 
12 This table corresponds to the disjunction of logics such as LP, when presented with Dunn semantics. Thus, it is 

easy to see that both classical logic, FDE and LP have the same evaluation conditions for their connectives, but 
differ in their tabular presentation. 
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We can say that, in this approach, ≸ is a disjunction. Since the truth conditions are the same for 
∨ and for ≸, the proof is trivial. Both A≸B and A∨B have only one interpretation where they 
are not true, 0∈i(A) and 0∈i(B). Hence, when 1∉i(A∨B) then 0∈i(A≸B), and vice versa. 

Now let us consider a version of the conjunction of FDE with the three admissible 
interpretations {1}, {1,0}, {0}13 , i.e., 
 

A∧B {1} {1, 0} {0} 

{1} {1} {1, 0} {0} 

{1,0} {1, 0} {1, 0} {0} 

{0} {0} {0} {0} 
 

It is easy to check that the following arguments are ←ntf-valid 

A≸B ⊢←ntf A∧B    and    A∧B ⊢←ntf A≸B 

That is, it holds that 

A≸B ⊣←ntf⊢ A∧B 

We can state that, in this approach, ≸ is also a conjunction. Since the falsity conditions are the 
same for ∧ and for ≸, it is enough to look at the truth tables to see that 1∉i(A∧B) if and only if 
1∉i(A) or 1∉i(B). Finally, in these same interpretations, 0∈i(A≸B). Then, A≸B ⊢←ntf  A∧B. On 
the other hand, 1∉i(A≸B) only in the case where 0∈i(A) and 0∈i(B). In the same interpretation, 
0∈i(A∧B). Then A∧B ⊢←ntf A≸B. 

It is not strange that ≸ is a conjunction and a disjunction at the same time, given its introduction 
and elimination rules. However, in Estrada-González and Nicolás-Francisco’s method, logical 
consequence plays a decisive role in the clarification of this type of mixed connectives. For 
example, if we were to evaluate A≸B ⊣←ntf⊢ A∨B, and A≸B ⊣←ntf ⊢ A∧B with a truth-preserving 
logical consequence relation, the result would be that ≸ is only a disjunction, but not a 
conjunction. However, to show our result, we use homogeneously the same consequence 
relation of the theory, i.e. ←ntf-validity. Therefore, ≸ here is both a disjunction and a conjunction. 
The argument that tonk is a disjunction and a conjunction is not conclusive, certainly. This is 
because the conclusion depends on ←ntf-validity, and although we have argued that this is a good 
notion to work with in this context, different logical consequence relations may give different 
results about what kind of connective tonk is. 

 

 

 
13 This table corresponds to the conjunction of logics such as LP, when presented with Dunn semantics. 
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5. Conclusion 

In recent times, many people emphasize the limits of logic and formalization, appealing to the 
most diverse limitative theorems. With this paper we wanted to give an example that, in logic, 
with enough care and freeing oneself from some unnecessary assumptions, one can have the 
cake and eat it. 

When many have considered a formal result to be definitive, they do so on the basis of various 
assumptions, which are often implicit. In the case of tonk, for example, the validity of Transitivity 
in the consequence relation was an implicit assumption that distorted tonk’s picture. Probably 
the lesson to be drawn here is that there are no strange or bad connectives per se, only 
connectives that may be incompatible with certain languages and certain consequence relations. 
This lesson is a generalization of Belnap’s work which, as we said, suggests that tonk is a 
trivializing connective only in transitive logics.14 

We showed that, without artificial motivation, it is possible to obtain a logical consequence 
relation with which tonk does not trivialize. Also, we proved that it is possible to define tonk with 
fewer admissible interpretations than those used by Cook. Finally, as a bonus, we presented a 
way of identifying tonk as a connective that is both a disjunction and a conjunction. 
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