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HOW WE LEARNED TO STOP WORRYING AND LOVE TONK

(Como aprendimos a dejar de preocuparnos y a amar a tonk)

Luis Estrada-Gonzalez
Institute for Philosophical Research, UNAM

Christian Romero-Rodriguez’
Institute for Philosophical Research, UNAM

ABSTRACT: According to common wisdom, the connective #n£& defined by Prior trivializes any theory
that contains it. However, it should not be forgotten that whether an argument holds or not depends to
a large extent on the underlying notion of logical consequence. Logical consequence is usually assumed
to be Tarskian, that is, reflexive, transitive and monotonic. However, Belnap had already conjectured that
tonk might not be so problematic in a non-transitive logic, which Cook finally proved in 2005. In this
paper we improve on Cook’s result in two ways: our hypothesis is simpler (namely, we use fewer
interpretations than he did and we do not rely on a disjunctive consequence relation) and it is not ad hoc
(namely, our working consequence relation is not designed merely to avoid triviality under 77£).

Keywords: fonk, Dunn semantics, non-Tarskian logical consequence, non-transitivity

RESUMEN: Segun la sabidurfa popular, la conectiva 7ok definida por Prior trivializa cualquier teorfa
que la incluya. Sin embargo, no hay que olvidar que, si un argumento es légicamente valido o no, depende
en buena medida de la nocién de consecuencia légica subyacente. Casi siempre se asume que la
consecuencia légica es tarskiana, esto es, que es reflexiva, transitiva y monoténica. Sin embargo, Belnap
habia conjeturado que fonk podria no ser tan problematica en una légica no transitiva, cosa que finalmente
prob6 Cook en 2005. En este articulo mejoramos el resultado de Cook en dos aspectos: nuestra hipotesis
es mas simple (a saber, usamos menos interpretaciones que él y no usamos una relaciéon de consecuencia
logica disyuntiva en el definiendum) y no es ad hoe (a saber, nuestra relaciéon de consecuencia logica no esta
definida exclusivamente para evitar la trivialidad).

Palabras clave: tonk, semantica de Dunn, consecuencia logica no tarskiana, no transitividad

Short summary: Belnap highlighted the role of Transitivity in Priot's triviality proof involving fonk, but
a non-trivial, non-transitive logic with fonk was never developed until Cook's proposal with four
interpretations and a disjunctive consequence relation. We improve on that proposal: we show that only
three interpretations suffice and that a non-disjunctive consequence relation is not required.
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Introduction

In The runabout inference ticket, Prior (1960) introduced the binary connective fonk. Prior defines
tonk by stipulating its introduction and elimination rules. The problem with #on£ is that its
incorporation into certain theories can trivialize them. It is enough to have oz and a transitive

logical consequence relation for it to be possible to conclude any formula.

In Tonk, Plonk and Plink, Belnap (1962) noted that the introduction and elimination rules of zonk
could be compatible with other types of logical consequence relations. That is, the trivialising
effects attributed to #onk should only be restricted to transitive logical consequence relations.
Unfortunately, Belnap never provided a non-transitive logic for this purpose. Many years later,
in What's wrong with Tonk(?), Cook (2005) introduced a non-transitive logic for znk, which he
called Tonk Logic (TL). Cook takes the language of First Degree Entailment (FDE) as a starting
point, expands it to include o7k and defines a new logical consequence relation. In the non-
transitive logic presented by Cook, #nk is just another connective in the language and does not
trivialize.

However, despite Cook’s best efforts, his proposal seems contrived for two reasons. The first is
that it requires four admissible interpretations to express fon£; the second is that the notion of
logical consequence used by him is disjunctive and does not seem to be a minimal modification
of the Tarskian notion of logical consequence, so it requires too much conceptual motivation.
Here we present a proposal that does not have these problems: we show that three admissible
interpretations are sufficient to express %k, and we use a notion of logical consequence that is
not disjunctive and is more natural than Cook’s in the sense that, when used in contexts with
only two admissible interpretations, it is coextensive with the Tarskian notion of logical

consequence.

The plan for this paper is as follows. In the first section, we introduce %7k and the assumptions
necessary for its trivialisation. We also present Barceld’s (2008) method for converting (bivalent)
truth tables into derivation rules (and vice versa). This method is useful for us to present the
evaluation conditions of #znk. In the second section, we present Cook’s TL logic and two
objections to his proposal. In the third section, we show that there is a way in which snk can
validate Prior’s rules without appealing to a logical consequence relation, which may seem
artificial. Finally, we present a method for identifying what kind of connective #onk is, to
determine that it is both a conjunction and a disjunction.

1. The bomb

Prior (1960) argued that a meaningful connective cannot be specified simply by its introduction
and elimination rules. To illustrate his thesis, he proposed a binary connective called ‘zong’,
represented here by ‘$’, with the following introduction and elimination rules, where .4 and B

are any formulas of the language:



tonk Introduction (1)
Ar A$B
B+ _A$B
tonk Elimination (E$)
AEBF A
A$BF B

The problem with fonk is that it seems to trivialize any theory T in which it appears. Consider
the following proof:

1. A1 A$B I
2. A$B 1 B E$
3.AFr B 1, 2 Transitivity of Fr

The conclusion expresses that, if a theory T includes #on£, any formula of the language implies
any other.

For many, including Prior himself, the lesson of fonk’s case is that for a connective to be
meaningful it must correspond to a pre-theoretical meaning which cannot simply be captured in
a system of rules. Some, like Stevenson (1961) in Roundabont the runabont inference-ticket, argue that
such a pre-theoretical meaning can be captured, at least to a satisfactory extent, by evaluation
conditions such as those underlying truth tables. If this is so, then to show that there can be no
pre-theoretical meaning associated with fonk, it would suffice to show that fnk cannot be
evaluated, that it has conditions that cannot be satisfied. Stevenson shows that #ox£ has classically
impossible conditions to satisfy, but here we want to present an alternative argument which is

clearer to us.

Axel Barcel6 (2008) developed a method for converting two-valued truth tables into natural
deduction rules (NDR) with multiple-conclusions' and vice versa, which is particularly useful for
showing the peculiarities of the evaluation conditions required by fonk. Let us first note thatin a
multiple-conclusion framework, both rules for 7nk can be simplified:

Tonk Introduction (If) Tonk Elimination (E$)
A, B+ A%B ALB+ A, B
We now explain Barcelé’s method. Let ©( Ay, . . ., A,) be a formula whose main connective is

the n-ary connective ©. Then
L ©(A, . .., A, is a conclusion in an NDR if and only if it is true.
IL. ©(A, . .., A,)is a premise in an NDR if and only if it is false.

I For more on multiple-conclusions, see Shoesmith and Smiley (1978).
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III. A is a premise in an NDR if and only if it is true.
IV.  Apisaconclusion in an NDR if and only if it is false.

Where 1<£<n.

For example, consider the truth table of the extensional conditional (—), where truth and falsity
are represented by 1 and 0.

A B A— B
1 1 1
1 0 0
0 1 1
0 0 1

From each line of the table, we can obtain an NDR. In descending order, the four rules are as
follows:

1. A BFLA—>B
2. A A— BFLB
3. Brp.A— B, A
4, F1LA—> B, A B

In the first case, by (III), A and B are premises because they are both true. By (I), A— Bis a
conclusion because it is true. In the second case, by (I1I), A is a premise because it is true. By
(II), A—B is a premise because it is false. By (IV), B is a conclusion because it is false. The same
can be done with 3 and 4.

The evaluation conditions obtained from Prior’s rules for znk, using Barceld’s method, are as
follows:

A$B is true if and only if A is true.
A%B is true if and only if B is true
A$B is false if and only if A is false
A$B is false if and only if B is false
Or, rewriting:
A%B is true if and only if A is true or B is true.
A%B is false if and only if A is false or B is false

Here we can clearly see that this connective is undefinable in classical logic, since it requires
interpretations that are not admissible in a usual two-valued semantics. Suppose A is true and B

is false: according to the evaluation conditions just given, A¥B is true (since A is true) and false



(since B is false). The same result is obtained by assuming that .4 is false and B is true. The table
for fonk would look like this:

A%B 1 0
1 1 1,0
0 1,0 0

One might ask whether this is not a semantics-dependent rather than a logic-dependent result;
in other words, one might ask whether #z7£ is not definable in some other semantics for classical
logic. The short answer is ‘no’: there is no semantics § which has the following characteristics:

- §'is functionally complete using a classical metatheory.
- A connective with homophonic evaluation conditions for znk is definable in S.
- The Prior rules for fonk are valid under S.
- The notion of logical validity is Tarskian.
So far, the bomb: #on£ trivializes any theory with a semantics § that has the conditions just stated.

In On three-valued presentations of classical logic, Da Ré, Szmuc, Chemla and Egré (2023) introduced
some logics, with three-valued semantics, which could be considered as presentations of classical
logic. However, some of these logics are not reflexive or transitive. Moreover, some of these
semantics are not functionally complete. Therefore, even if connectives such as 77k are definable
in some of these semantics (such as the 7k we will present in the next section), they do not
satisfy the requirement of being Tarskian or of being functionally complete enough to constitute
a counterexample to what has been said above.”

2. How we stopped worrying

As we have seen, A$B is true and false if one of its components is true and the other is false.
For fonk to be expressible, then, at least three admissible interpretations are needed for any
formula A: A is (only) true, A is (only) false, and A4 is both true and false. Fortunately for us,

In Formalization of Logic, Carnap (1943) presented non-normal semantics for classical logic. In these semantics,
interpretations are considered non-normal because, according to Church (1943, p.493), they “contravene in some
way the usual interpretation of classical truth tables”. Some ways of “contravening” the usual semantics are to
increase the number of values or the number of interpretations, or to force non-equivalence between true
(respectively false) and non-false (respectively non-true). For example, in Carnap’s non-normal semantics, in the
evaluation conditions of negation (expressed here with ‘IN’), it is either the case that, i) NA is true if and only if A
is true, or ii) NA is false if and only if A is not false. Tables compatible with these non-normal semantics can also
be found in Church (1953). However, these semantics are not functionally complete either, so they do not provide
a counterexample to the above. Some criticisms and comments on Carnap’s proposal can be found in the
aforementioned Church (1944).



and for fonk, such semantics are better known and more workable than they were in Stevenson’s
time.

Before presenting our proposal, we present Cook’s (2005) proposal. To do this, it is necessary
to first introduce Dunn semantics. Dunn semantics allows us to relate, not necessarily in a
functional way, propositional variables to only two truth values, namely, truth and falsity. See
more in Dunn (1976). Despite the two-valued nature of the semantics, we can have different
sets of admissible interpretations to represent different logics. Omori and Sano (2015) proposed
a general method to transform truth tables with up to four admissible interpretations into truth
and falsity conditions. In the following, we present Cook’s Tonk Logic (TL), which uses a Dunn
two-valued semantics.

Let L be a formal language for TL with a set of formulas constructed in the usual way, from a
set of propositional variables VAR = {pi,..., p,} with the connectives ~, A, V and ), in which
‘®’ is the symbol Cook uses for tonk.” We will use the letters ‘A, ‘B’, ‘C,..., of the Latin alphabet
as arbitrary formulas of L, and the letters 17, ‘A’,..., of the Greek alphabet as sets of formulas.

An interpretation ‘7’ for L is a relation between atomic formulas and the truth values (1 and 0),
such that we have the following ways:*

® /i is true but not false, represented by ‘1€4(p) and 0€4(p)’; more briefly, {(p)={1};
® p:iis true but also false, represented by ‘1€#(p) and 0€4(p)’; more briefly, i(p)={1, 0};
e p:is neither true nor false, represented by ‘1€4(p) and 0&4(p)’; more briefly, (p)={ };
piis false but not true, represented by ‘0€4(p) and 1€4(p)’; more briefly, i(p)=1{0}.

The interpretations extend to evaluations for all formulas according to the following evaluation
conditions’:

1€4(~A) iff 0€i(A)

0€i(~A) iff 1€4(A)

1E€i(AAB) iff 1€i(A) and 1€i(B)
0€i(ANB) iff 0€i(A) or 0E4(B)

3 There is a conditional .4—B which is definable as ~.4VB; and a biconditional .4 <> B which is definable as (4 —
B) A (B— A).

We have chosen to work with a Dunn-style bivalent semantics, which is characterized by having only two truth
values. Unlike other approaches, the evaluation here is not restricted to a function but is a relation in general. This
allows for the consideration of all four possible interpretations, even with only two truth values. The interpretation
7 should not be understood as a function, is used as relation that assigns sets of values to formulas. So the notation
i(p)={1} does not presuppose a standard functional interpretation. We are not assuming a classical set theoretic
metatheory. Many three-valued and many-valued logics can be presented using a Dunn-style bivalent semantics.
Presenting them in this way has significant advantages, as it avoids engagement in debates about the ontological or
semantic status of other kinds of values (such as 7 4, #, etc.), and allows us to bypass discussions concerning whether
such entities genuinely count as truth values. Since this issue goes beyond the scope of the present article, we refer
the reader to Estrada-Gonzalez (2019) and (2022) for a more detailed treatment.

> We use the same notation for interpretations and evaluations.
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1€i(AVB) iff 1€i(A) or 1€i(B)
0E€i(AVB) iff 0€i(A4) and 0E/(B)
1€(AQB) iff 1€i(A)
0Ei(AR B) iff 0€i(B)

The evaluation conditions can be presented in tabular form as follows:

~4 | A AvB | {1 | {0y | 1) | A0S
07 | A R Rt
11,0} | {10} L0y | | {05 | 1 | {10}
| U (SRS A (T N S R
3| 103 07 | {1y | oy | 43 | {05

AAB | {1} {0} | 1) {0} AQB | {1} | {10} | {} {0}

(ay | ) | {0 £} {0} (o {1 4L} {1} | {10}

(1,0} | {1,0} | {1,03 | {0} | {O} {10}y | {1} | {10} | {1} | {1,0}

{} {1 {0} {1 {0} {} {} {0} {} {0}

oy | {0} | {0} | {0} | {0 {0} {} {0} {} {0}

The logical consequence relation of TL is the following: Let 4 and I' be a formula and a set of
formulas of L, respectively. .4 is a logical consequence of I' in TL, I' Fr A4, if and only if, either,
for each interpretation , if 1€4(B), for all BE I', 1€:(A); or, for each interpretation 7, if 0€4(A),
0€4(B) for some BEI'. According to TL’s definition of logical consequence, an argument is
logically valid if and only if either: either truth is preserved from premises to conclusion in every
interpretation (truth-preserving), or falsity is preserved from conclusion to premises, also in
every interpretation (falsity-preserving).

Transitivity is not valid in TL:

If AEL Band B EL C, then A EL C



To give a counterexample to Transitivity is to show that 4 Fr. Band B Fr. C are valid arguments,

while A Fyr Cis an invalid argument. Specifically, using 7on£, the following argument is invalid:
If A ErL A®B and A®B ErL B, then .4 ErL B

Using the sonk table, we can see that if A is true, then AQB is true, so A ErL AQB is a valid
argument. It can also be seen that if B is false, then AQB is false, so AQB F1 B is valid.
However, A Er. B is not valid because it preserves neither the truth of the premises to the
conclusion nor the falsity of the conclusion to the premises. For example, if {(4)={1} and
i(B)={0}. A consequence of TL being a non-transitive logic is that Priot’s triviality proof does
not hold for it. Thus Cook ends his attempt to claim 77k as a meaningful connective.

However, and despite Cook’s best efforts, his proposal seems contrived for two reasons. The
first is that it requires four admissible interpretations to express fon£; the second is that the notion
of logical consequence used by him is disjunctive. We begin by discussing the second reason. It
seems to us that defining a disjunctive logical consequence is not a minimal modification of the
Tarskian notion of logical consequence because it requires too much conceptual motivation not
to seem ad hoc. Let us recall the Tarskian notion of logical consequence:

e Anargument I Fr A is logically valid if and only if, for each interpretation 7, if 1€4(B), for
all BET', 1€4(A).

The definition of logical consequence of TL can be obtained from the Tarskian notion of logical
consequence by putting its definiens in disjunction with that of the following logical consequence
relation:

e An argument I Fv A is logically valid if and only if, for each interpretation 7 if 0€7(A),
1€4(B) for some BET.

Cook does not give an argument in favor of his disjunctive logical consequence relation because
he considers that it is not too “extravagant or inconceivable” (Cook, 2005, p.221). According to
Cook, accepting his consequence relation implies that “there is no reason to prefer the Truth-
Preserving Consequence to the Falsity-Preserving Consequence, or vice versa” (Cook, 2005,
p.222). Indeed, when classical logic is presented, for example, one can use either the Truth
Preservation Consequence or the Falsity Preservation Consequence interchangeably, since both
determine the same collections of valid and invalid arguments. From the classical perspective
there is thus no reason to prefer one over the other.

There is a reason why we consider the disjunctive logical consequence relation to be an ad hoc
hypothesis, namely that the preference of the disjunctive logical consequence definition over
one that uses only one of the two disjuncts depends entirely on the presence of #nk in the
language. Say that a disjunctive logical consequence relation D is redundant if and only if there is
a logical consequence relation N in whose definiens only one of the disjuncts of the definiens of D
is needed, and both N and D characterize the same arguments (based on a semantics .5).



Inlogics such as FDE or classical logic, the disjunctive logical consequence relation characterizes
exactly the same arguments as the logical consequence relations based on any of the disjuncts of
the disjunctive relation. In TL, the logical consequence relation is not redundant, some
arguments are valid thanks to one of the disjuncts, but others are valid thanks to the other
disjunct (as they would be invalid according to the first one). For example, A¥B b B is a valid
argument with Falsity Preservation, but invalid with Truth Preservation. However, if fonk were
not part of the language of TL, as in FDE, the logical consequence relation would be redundant.
So, the basis of the disjunctive definition has no justification independent of the possibility of
defining fonk.

As in other fields, ad hoc hypotheses in logic are questionable because they are introduced for the
sole purpose of resolving a discrepancy between the theory and a particular result. .Ad hoc
hypotheses, such as the disjunctive logical consequence relation, do not extend the scope of the
theory or its ability to solve other logical problems. Here we argue that three admissible
interpretations are sufficient to express fon£, and we use a notion of logical consequence which
is not disjunctive, and therefore its justification is not based on the fact that it allows 774 to be

defined.

Let us recall Prior’s argument:

1. A1 A$B I
2. A£B 1 B E$
3. AFr B 1, 2 Transitivity of b

Priot’s rules for fonk do not in themselves imply triviality, as Belnap (1962) had already pointed
out. The conclusion depends crucially on the validity of Transitivity of Fr and not only on Prior’s
rules. So it seems that there are at least two ways to avoid the triviality result that every formula
implies every other formula, either one of Prior’s rules must be invalid, or Transitivity must be
invalid.

Let us recall the evaluation conditions obtained by Barcel6’s method:
A%B is true if and only if A is true or B is true.
A%B is false if and only if A is false or B is false

The table for 7onk would be as follows, using only three admissible interpretations:

A£B {1} {1, 0} {0}
{1} {1} {1,0} {1,0}
{1,0} {1,0} {1,0} {1,0}
{0} {1, 0} {1,0} {0}




However, it seems that, in this semantics, the road to non-transitivity is closed, since the notion
of Tarskian logical consequence is transitive, and that rather the rule E$ is invalid. In fact,
consider the interpretation in which A4 is {1} and Bis {0}. In this case, the premise of A¥B Fr
B is true but the conclusion is not. On the other hand, the way to define Cook’s 77k using only
these three admissible interpretations is also closed: Cook’s fonk (&) is not true and not false
even if A is false and B is true. That is, {AQB) = { } when #(A) ={0} and #B) = {1}. This is
not the case for ¥. Using the same evaluation conditions of $, we can also define #nk for

semantics with four admissible interpretations:

A$B | {1} | {103 | {3 | {0

g oy g L0}

{1,0} | {1,0} | {1,0} | {1,0} | {1,0}

U | g oy 43 | 05

105 | {10} | 11,0} | {0} | {0}

A corollary of this is that Dunn semantics allows us to identify at least two #n& connectives. The
first, ¥,, is defined by Prior-style introduction and elimination rules; the second, %,, by
evaluation conditions.’ In general, these are different connectives, for the rule ES$ may not hold
for $,,, while the connective for which both Est and It hold has different evaluation conditions
than $,.

According to Barceld’s method, #on£ is a connective that has the truth condition of a disjunction
and the falsity condition of a conjunction. However, @ has neither the truth-condition of a
disjunction nor the falsity-condition of a conjunction. & recovers only patt of the evaluation
conditions of conjunction and disjunction. For this reason, our fonk connective (¥, according
to the notation of the previous paragraph) is not the same connective as Cook’s connective ().
Cook’s @ connective is designed on the basis of the minimal requirements that introduction
and elimination rules must fulfil in order to trivialize a logic such as the classical one. For this

reason, we consider @ to be more similar to ¥, than to ¥,.

Something very similar occurs with the #nk defined in Ripley (2015). In that work, fonk is
introduced through sequent rules, without reference to evaluation conditions. Within that
approach, sequents are taken to specify aspects of the meaning of fnk. The proposed rules are

as follows:

¢ In a different approach, this distinction between fonks was also explored by Buacar (2018) and Teijeiro (2020).
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'+ A tonk B, A T, A tonk B+ A

To illustrate why fon£ is problematic, Ripley argues that the Cut rule plays a central role in the
derivation of triviality. In doing so, she opens the way for investigations such as ours, which not
only aim to diagnose the problem, but also to provide a concrete tool capable of accomplishing
the work that Ripley had already outlined. On the other hand, using the method proposed by
Béziau (2001, p. 374), it is possible to extract the evaluation conditions of Ripley’s 7oz from its
associated sequent rules. These conditions match exactly those of the @ connective. Ripley
explores the possibility of having her sequent rules validate Priot’s original principles. This is
why her approach resembles Cook’s more closely. Therefore, Ripley’s zon£ is more closely related
to ¥, than to %, In this sense, our proposal can be seen as extending Ripley’s result by exploring

alternative ways of modeling a connective like Zon£.

The question now is whether there is any way in which ¥, can validate Priot’s rules E$ and I,
that is, whether we can have it all: a 7onk-like connective for which Priot’s rules are valid and
which is described model-theoretically by the truth condition of a disjunction and the falsity
condition of a conjunction. The answer is yes, and the simplest way to obtain it is by means of
a non-transitive notion of logical validity. Unlike Cook and Ripley’s proposals, our approach
extracts fonk directly from evaluation conditions. We have shown that extraction alone does not
ensure the validity of Priot’s rules; additional steps are necessary. Ripley and Cook begin
oppositely, assuming the validity of the rules from the outset and developing formal mechanisms
to avoid triviality. Their versions of sk preserve the truth of Priot’s rules within non-trivial
frameworks, whereas our proposal does not start from this assumption. Through Barcel6’s
method, we show that a non-transitive context remains necessary for these rules to be valid.

3. How we learned to love tonk

One problem with classical logic is that it identifies many properties that perhaps should not be
identified. This has been repeated many times for the case of contradiction and triviality, for
example, as well as for the pairs falsity/non-truth and truth/non-falsity, which is sufficiently
clear in the case of Dunn semantics. Precisely the distinction between falsity and non-truth, on
the one hand, and between truth and non-falsity, on the other, makes it possible to distinguish
in turn between different notions of logical consequence which are equivalent in classical logic:

1t The argument I' Fr. A is logically valid if and only if, for all interpretation, if the

premises are not only false, at least one conclusion is not only false either.

FAR The argument I' Fr. A is logically valid if and only if, for all interpretation, if the

premises are not only false, at least one conclusion is only true.
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St The argument I' Fr. A is logically valid if and only if, for all interpretation, if the
premises are only true, at least one conclusion is not only false.

55 The argument I' Fr. A is logically valid if and only if, for all interpretation, if the
premises are only true, at least one conclusion is also true.

The properties that premises and conclusions must fulfil in a logically valid argument are called
‘standards’ (see more in Chemla et al. 2017, p. 2198). In the logical consequence relations # and
s5, the standards of premises and conclusions are the same; in 7# and sz they are different, which
is why these logical consequence relations are called ‘mixed’. For more on #, ss, #s and 57, see
Cobreros et al. (2012a). For more on mixed logics, see Cobreros et al. (2012b). We have provided
the definition of these logical consequence relations, and given the framework of Dunn
semantics, they are useful for defining a formal consequence relation when working with three
ot four interpretations. The only variation lies in the interpretations considered (specifically, what
is understood as folerant).

For example, consider the admissible interpretations for K3, LP, and FDE. In these cases, the
interpretations to be considered for an argument to be s#valid are as follows:

o K3: {{1}{ }{0}}
Standard for premises: {1}
Standard for conclusion: {1} and { }
o LP: {{1}{1,0}{0}}
Standard for premises: {1}
Standard for conclusion: {1} and {1,0}
e FDE: {{1}{1,0}, { }{0}}
Standard for premises: {1}
Standard for conclusion: {1}, { }, and {1,0}

When working with three values, as in some semantic presentations of K3 and LP, it is common
to assume that there are different interpretations of the third value. In K3, this value is typically
interpreted as “neither true nor false”, while in LP, it is interpreted as “both true and false”.
Now, when considering mixed consequence relations (such as the s# and # relations), premises
and conclusions may treat this additional value differently, which might lead one to think that
two different readings of the same value are being used. As a result, it might seem that there are
not just three, but actually four values in play.

However, this objection, which could be extended to claim that four values or interpretations
are actually being used, does not apply in our case. The apparent difference in how the
intermediate value is treated between premises and conclusion is not due to multiple readings of
that value, but rather to the differentiated use of strict and tolerant standards in mixed
consequence relations. In other words, even though we are working with three interpretations,
there is no third value in our semantics that admits multiple interpretations. Thus, it is clear that
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there are semantic presentations of the s#and # consequence relations that, at a conceptual level,
do not require assuming two readings of the intermediate value.’

In classical logic, the direction in which the standards are connected is also indistinct, i.e. it does
not matter whether the connection of standards goes from premises to conclusions or from
conclusions to premises. In the four relationships above, the connection is from premises to
conclusions. But in contexts in which a distinction is made either between truth and non-falsity
or between falsity and non-truth, it is also important to distinguish the direction of connection
of standards (see more in Wansing and Shramko, 2008).* Thus, we have the following notions
of logical consequence:

~ff  The argument I' Fr, A is logically valid if and only if, for all interpretation, if at
least one conclusion is only false, the premises are also false.

fut. The argument I' Fr, A is logically valid if and only if, for all interpretation, if at
least one conclusion is not only true, the premises are only false.

<ntf. The argument I Fr, A is logically valid if and only if, for all interpretation, if at
least one conclusion is only false, the premises are not only true.

<ntnt. The argument I' Fr, A is logically valid if and only if, for all interpretation, if at
least one conclusion is not true, the premises are not true either.

Theotrem. I$ and E$ evaluated with _##fare valid, but Transitivity is not.

Proof. Suppose that A¥B is not true, that is, 1€4(A$B). This implies, in the semantics we are
working on, that it is false, i.e., that 0€/(A%B). But if 0€/{(A$B) and 1€/ A$B) then, by the
evaluation conditions of A¥B, both 0€4(A4) and 1€4(A), and 0€4(B) and 1€4(B). Thus, for any
interpretation 7, if 1€4(A%¥B), 0€4(A) and 0€4(B). But this means that 4 Fr A¥$B and B b1 A$B
are —nff -valid.

Suppose now that 4 is not true, that is, 1€:(A4). This implies, in the semantics we are working
on, that it is false, i.e., that 0€4{A). Then, by the evaluation conditions of A%B, 0E/(A%B).
Therefore, since 7 was arbitrary, A$B 1 A is n#f -valid. The reasoning for A$B Fr B is the
same, mutatis mutandis.

Finally, there is an interpretation that shows that A4 Fr B is not —n#f-valid, namely, i(A4) = {1}
and 4B) = {0}. Thus, while A Fr A$B and A$B bt B are —nf-valid, A 1 B is not —n#f-valid.
m

7 For example, in the presentation of the four definitions of mixed logical consequence proposed by Cobreros et al
(2012a), more than two truth values are employed. This raises the question, as one of the reviewers suggests, whether
three or four distinct values are being used.

8 As a reviewer cortectly observed, in classical contexts where Transitivity is a valid meta-argument, the relations
#, 15, st, and ssare coextensional with —ff, «fut, —ntf, and —nmtrespectively. However, these distinctions are
meaningful only in metatheories where Transitivity need not hold. Under a classical metatheory some definitions
are coextensive.
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Considering the language of FDE and the consequence relation . ##f, we obtain the same valid
arguments as those in ST logic (for more information, see Batrio, Rosenblatt, and Tajer (2015)).”
In the resulting logic, Transitivity does not hold. However, all logical truths of classical logic'’
and classically valid arguments of the form I' Fr A4 (though not all meta-arguments, i.e.,
arguments of the form “if I' kL4 then A k1 B”; Transitivity is an example of this) do hold."
One advantage of adopting ##fis that it is not disjunctive, so with or without toz, it does not
seem ad hoc. Supposing the validity of certain arguments, such as Transitivity, disjunctive and
non-disjunctive logical consequence relations may be coextensive, as we will see later. However,
one of the lessons we learn from tackling this problem is that presentation matters. In other
words, the way we define logical consequence relations is important, so that our results do not
appear ad hoc. Finally, we also show here that ##fis useful so that fonk does not lead to triviality
and can be considered as a meaningful connective.

Before concluding, a crucial point to address is the apparent equivalence between disjunctive
and non-disjunctive definitions of logical consequence. A reviewer has suggested there would
be no substantial differences between, for example, Cook’s definition (using disjunctive clauses)
and our non-disjunctive proposal, since both could be equivalent in a classical framework.
However, this alleged equivalence depends on some arguments that are invalid in the logical
consequence relations we analyze, such as szor —uf. To clarify this, let us first consider the
structure of the definitions.

Recall TL’s disjunctive definition of logical consequence. A is a logical consequence of I' in TL,
I' Bt A, if and only if either: for every interpretation 7 if 1 € 7 (B) for all BE I, then 1 € 7 (A);
or for every interpretation 7 if 0 € 7 (A), then 0 € 7 (B) for some B € I. Let A be X is true’; B Y
is true’; C Y is false’; and D ‘X is false’. TL’s logical consequence relation could be (4 — B) V

(C — D). Now, consider the following equivalence proof between the two notions:

. A—-BV({C—D) (TL's logical consequence)
II.  (~AVB)V (~CVD) (I., Extensionality)
L. (~AvD) Vv (BVv~Q) (II., Commutativity and Associativity)
Iv.  ~(~AVD)— (BVv~() (III., Extensionality)
V.  AA~D)— (BV~C) (IV., de Morgan and Double Negation)

Considering the meanings of A, B, C, and D, logical consequence can be read as

st The argument I' Fv. A is logically valid if and only if, for every interpretation, if
the premises are only true, the conclusions are not only false.

 Whether the fact that they have exactly the same collections of valid and invalid arguments is enough to say that
they are the same logic is something we will not discuss here.

10 A formula A is a logical truth (in a logic L presented under a semantics ) if and only if, for each interpretation 7 (of
5), 1€ i(A).

11 As one reviewer pointed out, the resulting logic does not share the same meta-arguments only if we assume local
validity. If we assume global validity, it also shares the same meta-arguments of classical logic and ST. For more
information, see Batrio, Rosenblatt, and Tajer (2015).
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The proof of equivalence requires the following assumptions:

e A—-BHL+ ~AVB Extensionality

e AVBtrLBVC Commutativity

e (AVB)VC L AV(BVQ) Associativity

e ~ (~AVB) kL (AAN~B) de Morgan

o ~~ArL A Double Negation
e If ArpBand BFLCthen AFLC Transitivity

While these definitions are equivalent in a classical metalanguage, such equivalence presupposes
the validity of arguments, like Transitivity, that are invalid in the logical consequence relations
we have outlined. Thus, the equivalence between disjunctive and non-disjunctive forms, which
critically depends on this property. Finally, although the proof of the previous theorem in the
metalanguage uses Transitivity, this does not guarantee that the defined relations (such as 77/
inherit the same property. In fact, the non-transitivity of z#f and sz clearly exemplifies how we
typically use a slightly stronger logic in the metatheory. In summary, the equivalence between
disjunctive and non-disjunctive definitions appears to depend on Transitivity, at least in the
standard proofs or frameworks considered here. However, it remains an open question whether
such equivalence could be established independently of Transitivity.

4. Bonus

Mixed connectives such as #onk raise the question of whether they are of the same type as some
of the connectives that were used to define them or whether they are of a new type. In the case
of tonk, the question is whether it is a disjunction, a conjunction, both or neither, or perhaps it
is a completely new type of connective. However, how do you know whether a connective is,
say, a disjunction?

Before answering this question, we need to define some concepts. Following Estrada-Gonzalez
and Nicolas-Francisco (2024), in a Dunn semantics, an exptession of the form »€(A) with »€ {1,
0} is called a Dunn atom. et v€(A) be a Dunn atom: we will say that 5&4(A), with »,5,€{1, 0}
and v, # v, is its Boolean counterpart. For example, the following cases (considered hotizontally) are
Boolean counterparts of each other:

0€i(~A) 1¢4(~A)
1€/(AVB) 0&i(AVB)

A tweaking is a modification in the evaluation conditions of a connective in which the only
changes consist of substituting Dunn atoms for their Boolean counterparts.

Let us now consider the logic FDE. FDE can be presented by means of a language L,
constructed in the usual way, with the following connectives: ~, A, V. The evaluation conditions

and tables are the same as those presented in Section 2. The logical consequence relation of
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FDE is as follows: Let .4 and I' be a formula and a set of formulas of L, respectively. A4 is a
logical consequence of I' in FDE, I'Erpe A, if and only if, for every interpretation 7 if 1€4(B),
for all BE I', 1€4(A).

Estrada-Gonzilez and Nicolas-Francisco (2024) say that a connective (9) is a dassically clear case

of negation/conjunction/disjunction/conditional, if:

1. The evaluation conditions of (© are the negation/conjunction/disjunction/conditional
conditions of FDE; or

2. 'The evaluation conditions of (@) are obtained from a fweaking of the evaluation conditions
of FDE.

A connective () is a negation/ conjunction/ disjunction/ conditional if and only if there is a clear case (@
of negation/conjunction/disjunction/disjunction/conditional such that:

@ ,..., A) 4Lk ® (Ay,..., A)

We believe that few would doubt that the connectives V and A are classically clear cases of
disjunction and conjunction, respectively. Although the tables with four interpretations look
different from the classical ones, the evaluation conditions of V and A are the same. We can state
that the disjunction V and the conjunction A satisfy 1. However, the evaluation conditions of $
do not correspond to those of any FDE connective and cannot be obtained by tweaking its

evaluation conditions. Then V and A are classically clear connectives, unlike $.
Now let us consider a version of the FDE disjunction with the three admissible interpretations
{1}, {1,0},{0}" ie.,
AVB {1} {1,0} 10}
{13 {1} {1} {1}
1,0} {1} {1, 0} {1, 0}
{0} {1} {1, 0} {0}

It is easy to see that the following arguments are . ##f valid

A$BF_,yAVB and AVB F_,,A¥B
That is, it holds that

AEB A AVB

12 This table corresponds to the disjunction of logics such as LP, when presented with Dunn semantics. Thus, it is
easy to see that both classical logic, FDE and LP have the same evaluation conditions for their connectives, but
differ in their tabular presentation.
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We can say that, in this approach, ¥ is a disjunction. Since the truth conditions are the same for
V and for ¥, the proof is trivial. Both A%B and .AVB have only one interpretation where they
are not true, 0€/(A) and 0€4(B). Hence, when 1€:(AVB) then 0€/(A$ B), and vice versa.

Now let us consider a version of the conjunction of FDE with the three admissible
interpretations {1}, {1,0}, {0}, i.e.,

ANB {1} {1, 0} {0}
{13 {1} {1, 0} {0}
{1,0} {1, 0} {1, 0} {0}
{0} {0} {0} {0}

It is easy to check that the following arguments are #/f~valid
A$B v uyANB and  AAB F_y AFB
That is, it holds that

AEB At ANB

We can state that, in this approach, ¥ is also a conjunction. Since the falsity conditions are the
same for A and for $, it is enough to look at the truth tables to see that 1€(AAB) if and only if
1€4(A) or 1€4(B). Finally, in these same interpretations, 0€4(A$B). Then, A$B k. AAB. On
the other hand, 1€i(A$B) only in the case where 0€4(A4) and 0€4(B). In the same interpretation,
0€4(AAB). Then AAB F_.y A¥B.

It is not strange that ¥ is a conjunction and a disjunction at the same time, given its introduction
and elimination rules. However, in Estrada-Gonzalez and Nicolas-Francisco’s method, logical
consequence plays a decisive role in the clarification of this type of mixed connectives. For
example, if we were to evaluate A$B 4y AVB, and A% B e - AAB with a truth-preserving
logical consequence relation, the result would be that $ is only a disjunction, but not a
conjunction. However, to show our result, we use homogeneously the same consequence
relation of the theory, i.e. —n#f-validity. Therefore, $ here is both a disjunction and a conjunction.
The argument that fonk is a disjunction and a conjunction is not conclusive, certainly. This is
because the conclusion depends on z#-validity, and although we have argued that this is a good
notion to work with in this context, different logical consequence relations may give different
results about what kind of connective fonk is.

13 This table corresponds to the conjunction of logics such as LP, when presented with Dunn semantics.
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5. Conclusion

In recent times, many people emphasize the limits of logic and formalization, appealing to the
most diverse limitative theorems. With this paper we wanted to give an example that, in logic,
with enough care and freeing oneself from some unnecessary assumptions, one can have the
cake and eat it.

When many have considered a formal result to be definitive, they do so on the basis of various
assumptions, which are often implicit. In the case of 7ok, for example, the validity of Transitivity
in the consequence relation was an implicit assumption that distorted 7on£&’s picture. Probably
the lesson to be drawn here is that there are no strange or bad connectives per se, only
connectives that may be incompatible with certain languages and certain consequence relations.
This lesson is a generalization of Belnap’s work which, as we said, suggests that fonk is a
trivializing connective only in transitive logics."*

We showed that, without artificial motivation, it is possible to obtain a logical consequence
relation with which 7on£& does not trivialize. Also, we proved that it is possible to define fon£ with
fewer admissible interpretations than those used by Cook. Finally, as a bonus, we presented a
way of identifying ok as a connective that is both a disjunction and a conjunction.
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