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1 What is Computational Semantics?

Computational semantics is a relatively new discipline that combines insights from
formal semantics, computational linguistics, and automated reasoning. The aim of
computational semantics is to find techniques for automatically constructing semantic
representations for expressions of human language, representations that can be used
to perform inference. In this paper we introduce computational semantics from a
logic-oriented perspective.

We begin in Section 2 by discussing the most basic issue of all: what kinds of se-
mantic representation are suitable for capturing the meaning of human language? Ac-
tually, there is no unique answer: it depends on what you want to do, on the level of
detail at which you want to work, and on the linguistic phenomena you wish to ana-
lyse. Nonetheless, choices need to be made, and we shall argue that first-order logic is
a sensible starting point.

One we've settled on a semantic representation language, how do we automate the
process of associating semantic representations with expressions of human language?
Essentially by using a syntactic analysis to guide the process of assigning semantic rep-
resentations, and in Section 3 we discuss the two methods dominant in computational
semantics for doing this: one based on unification, the other based on the lambda cal-
culus. However we also need to cope with the ambiguities inherent in human lan-
guage. Without context, many human language expressions can be assigned several
meanings. So we also discuss two phenomena that lead to ambiguity, and outline ways
of coping with them.

Finally, once we have semantic representations at our disposal, how can we use
them to automate the process of drawing inferences? Section 4 discusses the use of
techniques from automated reasoning (such as theorem proving and model genera-
tion) to implement consistency and informativeness checks. We also introduce the
idea of generating minimal models of the meaning of natural language expressions.

But before turning to the details, a more general question should be addressed:
why bother with computational semantics at all? There are at least two reasons. Firstly,
computational semantics is potentially useful in such applications as information re-
trieval, information extraction, dialogue systems, question answering, interpreting con-
trolled languages, and so on.

Secondly, it is likely to prove of increasing scientific importance. In the 30 years since
the work of Richard Montague (Montague 1974) formal semantics has made substan-
tial contributions to our understanding of the way human language works. Arguably,
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however, further progress in semantics will depend on getting to grips with the inter-
actions between various phenomena, and on better understanding the role played by
inference. Such issues are inherently complex, and the use of computational tools will
not merely be helpful, it will be vital.

2 Semantic Representations

2.1 First-Order Representations

Traditional formal semantic analyses of human language typically presuppose formal-
isms with high-expressive power (for example, higher-order logic augmented with
modalities) but in computational semantics some variant of first-order logic is gener-
ally preferred. This choice is sensible for at least two reasons. First, as we shall discuss
in Section 4, first-order theorem provers (and to a lesser extent, first-order model
builders) now offer levels of performance which make them genuinely useful for cer-
tain reasoning tasks. Second, as we will show in this section, first-order logic is able to
deal (at least to a good approximation) with a wide range of interesting phenomena. In
short, first-order logic offers an attractive compromise between the conflicting de-
mands of expressivity and inferential effectiveness.

Let's swiftly review first-order logic. Every first-order language has a vocabulary,
telling us which symbols are used and how. Suppose we have a vocabulary consisting
of the constants SUNSET-BOULEVARD, MULHOLLAND-DRIVE, the one-place relations
WOMAN, AFRAID, and the two-place relations POLICE-REPORT, LOCATION, and
CROSS. Such symbols are often called the non-logical symbols of the language. The
remaining ingredients of a first-order language are a collection of variables (x, y, z and
so on), the boolean connectives (U, U, @, ®), the quantifiers ($, " ), and the brackets
plus the comma to group together symbols. The variables and constants are the terms
of the language. The formulas of language are defined as follows:

1. If R is a symbol of arity #, and t1,%t, are terms, then R(t1,%%t,) is a for-
mula.
2. 1f t1 and t; are terms, then t1=t; is a formula.

3.1ff and ] are formulas then so are @f , fUj ), Uj ) and f®] ).
4. If f is a formula, and x is a variable, then both $xf and " xf are formulas.
5. Nothing else is a formula.

This is the syntax we shall use throughout this article (we drop brackets if this will
not lead to confusion). Here is an example of an English statement and its first-order
translation:

A woman crosses Sunset Boulevard.

$x(WOMAN(x) Uy (y=SUNSET-BOULEVARDUCROSS (x,y)))

2.2 Interpreting First-Order Representations

First-order formulas are interpreted in models (these can be seen as abstract realiza-
tions of situations) with the aid of variable assignment functions (these can be seen as
supplying extra contextual information). What do models look like? In set-theoretic
terms, a model M is an ordered pair (D;F) consisting of a domain D and an interpreta-
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tion function F specifying semantic values in D. Here's a simple example (it should be
clear that this model is a situation in which the formula just given is true):
D={d1,d2,d3} F(WOMAN)={d1}
F(CROSS)={(d1,d2),(d3,d2)}
F(SUNSET-BOULEVARD)=d2.

The crucial link between descriptions (first-order formulas) and situations (models)
is made precise in the satisfaction definition. Formally, the satisfaction definition
specifies a three place relation between a model M=(D;F), a formula f, and a variable
assignment g (a function which maps variables to elements of D). The satistaction re-
lation is defined as follows:

M, gER(t1 L) i (I ),y T2 DT F(R),

M, g EOf iff not M, g Ff,

M,gl:ny i M, gFf and M, gFyY,

M,gl:fljy i M, gEf or M, gFyY,

MgFf®yY if not M, g Ef or M, gFy,

M, g E$xf if M, ¢ Ef, for some x-variant g of g
M, g =" xf i M, ¢ Ef, for all x-variants ¢ of g

In the first clause, I} is I (c) if the term t is a constant ¢, and g(x) if t is a variable
x. In the last two clauses, by an x-variant g’ of an assignment g we simply mean an as-
signment g’ such that g'(y)=g(y) for all variables y* x. Intuitively, variant assignments al-
low us to “try out' new values for the variable bound by the quantifier (here x).

Once the satisfaction definition has been given, the way is open to defining some
fundamental inferential concepts. For example, a set of first-order formulas f is said
to be consistent if and only if all of them can be satisfied together in some model with
respect to the same variable assignment (that is, f is consistent if it describes a realiz-
able situation). And a set of first-order formulas f is informative if and only if it is 7oz
satisfied in all models (that is, f is informative if what it describes rules out some
situations).

But we defer our discussion of inference till Section 4. We must first consider
whether first-order logic offers us the kind of expressivity needed in computational
semantics.

2.3 First-order semantic representations

It is sometimes argued that first-order logic is too restrictive to model the semantics of
human language in an interesting way. Such claims don't withstand scrutiny. To be
sure, well-known results such as the Compactness Theorem and the Léwenheim-
Skolem theorems show that first-order logic has expressivity limitations -but the limi-
tations they reveal (such as its inability to distinguish infinite cardinalities) are usually
tangential to the central concerns of computational semantics. As we shall now see,
the kind of expressivity first-order logic offers opens the way to quite fine-grained
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analyses of semantic phenomena- if we are prepared to be flexible about the kinds of
entities which inhabit our models.

Modalities

At first glance, intensional phenomena (such as constructions involving necessity and
possibility, or knowledge and belief) seem to take us beyond the realm of first-order
logic, and many formal semanticists use various kinds of modal logic to cover these
aspects of human language!. Here's an example. Extend first-order logic with the fot-
mula prefix operators O (to express necessity) and & (to express possibilities).

Thus we can now say things like:

Maybe Mulholland Drive is where the accident was.

$x(x=MULHOLLAND-DRIVEUSy(ACCIDENT(y) UALOCATION(x,y)))
There must be a police report of the accident.
$x(ACCIDENT(x)UD $y(POLICE-REPORT(y,X)))

At first blush, such examples may seem beyond the reach of first-order logic. But
they're not. In fact, Kripke's celebrated semantics for modal logic is interesting pre-
cisely because it explains these rather mysterious looking intensional operators in
terms of ordinary (extensional) first-order quantification. And it's simple to exploit
Kripke's insight in a first-order semantic representation language. Add a second sort
of entity to our models (call them “possible wotlds' or “situations'). Add an accessibil-
ity relation R across these worlds. Add a one-place predicate symbol ACTUAL-WORLD
to pick out the actual world. Add an extra argument place to each relation on ordinary
individuals to relativise its interpretation to a particular world. Then translate away
modalities as follows:

(af ,wy2=" vR(w,v)® (f v)2)),
@f w)y2=$v (R (w,v)UF ,v)~2).

For example, the modal representation of “There must be a police report of the

accident' becomes
$w(ACTUAL-WORLD (w)U$x(ACCIDENT(w,x) U" v(R (w,v)® $y(POLICE-
REPORT(V,Y,X))).

In short, by letting models be mathematical pictures of richer ontologies (in this
case, an ontology containing possible worlds) we have moved from modal logic back
to ordinary first-order logic.

Tense and Aspect

Various temporal phenomena in human language (such as tense and aspect) can be
analyzed using the modal apparatus of Prior-style tense logic, or various modal logics
of intervals (both approaches are discussed in (van Benthem 1991)), but we are not
forced to follow either route. For a start, both Prior-style tense logic and interval lo-
gics can be translated into first-order logic (in essentially the same way used above for
ordinary modalities) so the way is open for either point-based or interval-based first-
order semantic analyses. But other options are possible.

1 See (Gamut 1991) for a textbook level introduction.
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For example, we could take a Davidsonian route and enrich our models with
primitive events and relations over them. This would allow us to take a sentence such
as
A woman crossed Sunset Boulevard.

and represent it as:
$x(WOMAN(x)Ube(CROSS (€) UAGENT (e,x) UTHEME (¢, SUNSET-
BOULEVARD) USt(TLOC(e,t) Ue<s)).

As before, if we are willing to countenance a richer ontology (either one containing
points of time, or intervals, or events) the way lies open to first-order analyses of the
semantics of temporal constructions.

Plurals

How can we deal with the semantics of plurals in first-order logic? Here's one way: en-
rich our models with plural entities, add a one place predicate group to pick out such
entities, and use a two-place relation member to indicate that an ordinary individual
belongs to a group entity. Then we can represent the sentence
Two well-dressed men are drinking coffee.
using the first-order formula:
$u(GROUP()UTWO()U" x(MEMBER(x,u)« (MAN(x)UWELL-
DRESSED(x) UDRINKS-COFFEE(x)))).
We can further constrain the interpretation of the symbol two by formulating a
meaning postulate:
" u(ITWO(u)« $xBy(MEMBER (x,u) UMEMBER (y,u)Ux? y)).
This axiom states that a plural entity has the property two if and only if it has at
least two distinct members.

2.4 The methodology of first-order modeling

We have seen that first-order logic offers expressive power relevant to the semantics
of human language. We have also seen that the key to realizing this power is to be
flexible about the kinds of entities we include in our models. To put it another way,
first-order approaches to the semantics of human language go hand-in-hand with rich
ontologies. This may be unpalatable to some philosophers. Arguably, however, the
most promising methodology for the semanticist is to try to get to grips with the un-
ruly ontology that human language seems to presuppose; to use Emmon Bach's (Bach
1986) phrase, the semanticist should engage in “natural language metaphysics”. In-
deed, it is arguable that this project is an indispensable prefude to philosophical analysis,
though we won't pursue the point here.

Are there limitations to this style of first-order modeling? Yes. When we introduce
new entities we have to introduce constraints governing how they behave. For exam-
ple, we might want to constrain the accessibility relation on possible worlds to be re-
flexive, or constrain the precedence relation on events to be transitive, or insist that
groups must have at least two ordinary individuals as members. When (as in these ex-
amples) the required constraints can be stated in first-order logic, nothing more needs
to be said. However if some postulates can't be written in this way, then out first-
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order modeling is only an approximation. For example, if we developed the first-order
approach to plurals sketched above in more detail, we would eventually find that we
needed constraints that first-order logic couldn't handle2.

But approximations are not to be despised, and many are remarkably good. Per-
haps the best known approximation is the quasi-reduction of higher-order logic to
first-order logic by introducing extra entities into models and constraining them to act
like higher-order functions3. Not all the required constraints can be written in a first-
order way of course (if they could, there would be no distinction between first- and
higher-order logic) but enough first-order postulates can given to yield an approxima-
tion to higher-order logic that in many respects is better behaved than standard
higher-order logic.

All in all; viewed from the perspective of contemporary computational semantics,
the expressivity offered by first-order logic seems a reasonable starting point for se-
mantic modeling. Indeed, when computational semanticists express doubts about
first-order logic, their doubts don't center on traditional issues of expressivity, but on
its (lack of) dynamic potential.

Here's an example. It's not easy to deal with discourse anaphora in first-order logic.

Consider the discourse

A woman crosses Sunset Boulevard. She is afraid.

Now, this clearly means the same as the following first-order formula:

$x(WOMAN(x)UCROSS (x, SUNSET-BOULEVARD)UAFRAID(X)).

So there is no expressivity problem: first-order logic captures the content of this
discourse.

But there is a trickier question -how can we systematically construct such represen-
tations? If we use (either of) the approaches described in the following section we will
probably end up with

$x(WOMAN(x)UCROSS (x, SUNSET-BOULEVARD)) UAFRAID (x).

This representation is incorrect -the final occurrence of variable x is not bound by
the quantifier, and thus is not linked with the variable x in WOMAN(x).

Several approaches to such issues have been explored. In Dynamic Predicate Logic
(DPL) (Groenendijk & Stokhof 1991) the first-order satisfaction definition is changed
so that the two representations just given mean exactly the same thing. In Discourse
Representation Theory (DRT) (Kamp & Reyle 1993), on the other hand, we would
represent the discourse using the following Discourse Representation Structure
(DRS):

[{x,y}, {WOMAN(xX), y=SUNSET-BOULEVARD, CROSS (X,y), AFRAID (x)}].

Here the occutrence of x in AFRAID is linked to the x in {x, y}, and hence to the
other occurrences of x.

Now, for present purposes it's not important to know how DRT and DPL manage
to get things right -but it is important to realise that neither formalism increases the

2 For a detailed discussion of this example, see (Lenning, 1997).

3 For a good discussion of the second-order case, see (Enderton 1972); for full higher-order logic see
(Doets & van Benthem 1983).
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expressive power at our disposal. Neither DPL nor DRT is more expressive than or-
dinary first-order logic. All three formalisms can be freely inter-translated. To put it
another way, they are notational variants.

But it would be Aighly misguided to conclude from this that the choice between
them is metely a matter of convenience. It's not. For some purposes (notably, dealing
with anaphora and presuppositions in a principled way) DRS notation (essentially a
“flat' form of first-order logic without explicit quantifiers ) is pretty much essential.

This is an instance of a lesson that comes up time and time again in computational
semantics: we need to be flexible about the form our representations take. For exam-
ple (as we shall learn when we discuss scope ambiguities in the following section) we
sometimes need to think about representations in an abstract “underspecified' way. So
when we argue that first-order representations are useful in computational semantics,
our claim should be interpreted in this spirit. We'te not arguing for blind devotion to
orthodox first-order syntax: in practice it may be useful to freely move between or-
thodox syntax and variants (such as DRSs) as the need atises.

3 Computing Semantic Representations

How do we automate the process of assigning semantic representations to sentences
of human language? That is, once we have fixed on a representation formalism (first-
order logic, for example) how do we write programs which take human language sen-
tences as input and return semantic representations as output? We will compare two
standard approaches -one making extensive use of unification, and one based on the
lambda-calculus. Both approaches require a grammar describing the syntactic structure
of the fragment of language of interest. We first consider the unification-based ap-
proach, probably the most popular method in contemporary computational semantics.

3.1 Unification-based approaches

To guide the process of constructing semantic representations for a fragment of Eng-
lish, a fully specified syntax for the fragment is required. We will assume a syntactic
analysis based on a collection of syntactic categories, whose interrelationships are de-
scribed in phrase structure rules, and whose contents are represented in lexical entries.
The categories themselves are represented as feature structures (familiar from various
linguistic formalisms, and sometimes referred to as signs (Pollard, 1994)). Variables
used for unification are represented by numbers in boxes. Here are some sample lexi-
cal entries:

[ phon: Mulholland Drive phon: walks
syn: pn sym: v

inder: inder:
SETR. SET.
content: -MULHOLLAND-DRIVE content: \’\'.\I.K[]

[ phon: a
syn: det phon: woman
irde:

restr:

SYnI noun

index: |1
SETT Ieml
[ content: \\'OM_-\N[J

SETN;




34 Patrick BLACKBURN, Johan BOS

Note that complex structures are used to instantiate the feature se (that is, the se-
mantic feature). Most lexical entries have an index feature designating a variable that
needs to be equated with some other piece of (still missing) information. Determiners
(here "a") have, in addition, features restr and scgpe whose task is to ensure cotrect
placement of the two key components of the representation, namely the restriction and
the nuclear scope (in the sentence ‘a woman walks', for example, linguists would call
‘woman' the restriction of the determiner “a', and “walks' its nuclear scope).

The phrase structure rules of the grammar direct the correct unification of all fea-
tures in the semantic part of a sign. The rules have the form LHS ® RHS, where LHS
(left-hand side) is a non-lexical category, and RHS (right-hand side) a non-empty or-
dered set of lexical or non-lexical categories. The rules state how LHS categories can
be expanded into a sequence of RHS categories. Here are some sample grammar rules.

) phon:
phon: -:- syn: det phon:

syr: np inder: syn: noun

SCOpe: | inder: B
SETI
[ content:

SETN; ST
content: :| J L
phon: whioti:

Testir:

SCope;

\_ content:

phon: -u'- syn: np sy vp
syn: s — inder: , -
index:

sem: | content sems | scope: SEM: tent

L content: |
confent:
phon: :
pn‘}r-’li.‘.

sym: np
: sym: pn
index:

index:
SETTL seope; SeIn s
: CONEend | £
conient: ;-]

Note how variables are used to pass on semantic information from daughter to
mother categories. You may find it instructive to work through the analysis of the sen-
tence "A woman walks.' If you do so you will obtain the feature structure

phon: a woman walks
syn: s

L_w-rl.'.j [.r-nnr:-nf: '\\'0}.1_.3.1\4'[] -\\'_.\[_1{('] ]] J

The value assigned to the comtent feature clearly amounts to
$x(WOMAN(x) UWALK (X)), as we would expect.

The unification-based approach can be applied to deal with a wide range of seman-
tic phenomena, and is very efficient. Many grammar formalisms which make use of
feature structures build semantic representations in more-or-less the manner just
sketched (Nerbonne, 1992a). Head-driven Phrase Structure Grammar (HPSG) is a
case in point (Pollard, 1994, Frank & Reyle 1995).

But despite its merits, the unification-based approach makes no principled distinc-
tion between variables used for unification and variables used in semantic representa-
tions. This gives rise to problems in cases where chunks of semantic representation
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need to be copied: a well known case is coordination. Even such a simple sentence as
‘Harry and Neal stare at the remains of the two cars' forces the value of the zndex fea-
ture of “state' to unify with the indexes of "Hatry' and "Neal'. This fails when the val-
ues are represented by constants, and yields an incorrect representation when they are
represented as variables, and so the correct representation cannot be constructed.

Grammar engineers generally find a way around the problems posed by coordina-
tion (and other grammatical phenomena where copying is involved) by ad-hoc tech-
niques applied to the lexicon or grammar rules. But there is a more principled ap-
proach to such difficulties: make use of the machinery provided by the lambda calcu-
lus.

3.2 Lambda-based Approaches

Let's use the lambda calculus as “glue-language' to combine semantic representations
systematically. This approach is attractive from a grammar engineering perspective: as
it distinguishes between the variables used to drive semantic construction and the
variables used in semantic representations, it bypasses the problems raised by copying
constructions such as coordination, thus making it easier to add a semantic compo-
nent to large-scale grammars.

We first need to add “glue' to our representations: we will use the A-operator to

abstract over missing information, and the @-operator to express functional applica-
tion. More precisely, all first-order formulas will be regarded as lambda expressions.

Moreover, if x is a variable, and F is a lambda expression, then \” F is also a lambda
expression. In this expression the variable x is bound; it is these lambda-bound vari-

ables that drive the semantic construction process. Finally, if F and A are lambda ex-

pressions, then so is (F@.A). Linking two expressions with an @ is essentially an in-
struction that the two representations have to be combined in the manner described
below (with F as the functor and A as the argument).

We continue our practice of dropping brackets if no confusion arises.
Secondly, we have to reorganize our lexicon. Typical entries will now look like this:

phon: Mulholland Drive phon: woman

sy pn syn: noun

sem: Axx=MULHOLLAND-DRIVE sem: AXJWOMAN(x)
phan: a phan: every phon: walks

sy det sym: det syns v

sem: Ap Agox(paxsgax) sem: Ap.Ag i plx—qax) sem: AN WALK(X)

And thirdly, the grammar rules. We still make use of variable unification, but we
won't use it to manipulate variables in the semantic representation (so we don't get any
unwanted interactions, and coordination will pose no difficulties):
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[ phon: -:— T [ phon: _ [ phan:

sym: np e syn: det SHNI NOUI

| sem: I:Efl'! ] | sem: | | sem:
[ phon: + ] [ phon: _ [ phan:

sy s — syn: np sPN VD

L sem: [fl.':l i L SEefrl il | Seil
[ phon: phon:

syn: np — | syn: pn
| sem: Aqg. x[fl.x Helabgl SEM:

Let's consider an example. Here's what the approach would yield for ‘a woman
walks':

phon: a woman walks
syn: 8
sems [ (Ap.Aq.ax{ i) GA WORMAN (X)) DA WALK(X))

That is, as we combine the various syntactic units, a sequence of function applica-
tions (the @s) records how the semantic representations are to be combined.

Let's now carry out the semantic combination (and in so doing get rid of all those
@s). We do this using an operation called b-conversion (also known as b-reduction or
lambda-conversion). b-conversion is the process of resolving all applications (expres-
sions formed by the @-operator) by substituting the argument (the right-hand side of
the @-operator) for the lambda-bound variables in the functor (the left-hand side of
the @-operator). In the example just given this induces the following reduction steps:

(O\p- Mg$x(p@xUq@x)@ Nx.WOMAN(X))@ Nx.WALK(x))=
g SxAx.WOMAN (x) @xUq@x) @ Nx.WALK(x))=

g $x(WOMAN(X) Ug@x)@ Nx.WALK(x))=
$x(WOMAN(x)U Ax.WALK (x) @x)=
$x(WOMAN (x) UWALK (x)).

The process of b-conversion can make use of a process called a-conversion (re-
naming of bound variables) to avoid accidental variable bindings. b-conversion can ei-
ther be performed during syntactic processing or in a distinct post-processing phase.
There are standard procedures available that implement both a-conversion and b-
conversion; see (Blackburn & Bos 2000).

We now have two ways of computing semantic representations. Note that the
choice of method is independent of our style of syntactic analysis (we used the same
grammar framework to illustrate both the unification-based and the lambda-based ap-
proaches). Which approach is better? We favour the lambda-based approach: although
it is less efficient (we need to eliminate @s to obtain the final representation), its more
disciplined treatment of variables better meets the requirements of serious grammar
engineering.

Our brief survey has not covered all contemporary semantic construction meth-
ods. Another interesting approach is to use linear logic as glue language for assembling
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meaning representations. Lineat logic is a "tesource-sensitive" version of classical logic
(once you've used a formula to draw a conclusion, you can't use it again) and this en-
ables it to be used to implement meaning composition. Formulations following this
paradigm exist for Lexical Functional Grammar (van Genabith, 1999) and HPSG
(Asudeh & Crouch 2002).

3.3 Dealing with Ambiguities

Expressions of human language are often highly ambiguous. There are many types of
ambiguity, and all are of concern to computational semantics. We shall confine our
discussion to two types: scope ambiguities and referential (or anaphoric) ambiguities.

Scope ambiguities arise when there are two or more scope bearing operator (such
as quantifiers, negation, or modal expressions) in an utterance. Here's a standard ex-
ample: the first interpretation is that the women witnessed possibly different acci-
dents, the second is that there was a specific accident witnessed by all women:

Every woman witnessed an accident.
{ " x(WOMAN(x)® $y(ACCIDENT(y) UWITNESS (x,y))),
$y(ACCIDENT(x)U" x(WOMAN(x)® WITNESS(x,y)))}

Don't be misled by the simplicity of this example: only two distinct tepresentations
are possible for this sentence, but in general the number of readings explodes expo-
nentially as the number of scope-bearing operators increases. Moreover, in this exam-
ple the two possible representations are related (the second implies the first) but this is
by no means always the case*. Finally, in many syntactic frameworks this sentence
would have only one plausible syntactic analysis, hence the syntax-driven semantic
construction methods discussed in the previous section would only be capable of
building one of the two representations. All in all, scope ambiguity is a serious prob-
lem, one that needs to be addressed by computational semantics.

One of the eatrliest treatment of scope ambiguities in a semantic formalism was
Robin Coopet's influential method of quantifier storage (Coopet, 1983). Cooper de-
signed special semantic representations called stores, containing the core semantics
(with indexed free variables), and a set of unscoped quantifiers (using the indexes to
control the binding of the free variables in the core semantic representation). Quanti-
fiers could optionally enter the store during the computation of the semantic represen-
tation. At any point in the derivation, but normally at the end of the construction
process, the quantifiers could be retrieved from the store and applied to the core rep-
resentation, yielding an ordinary logical form. The different order in which retrieval
could be carried out gave rise to the different scope possibilities. Bill Keller subse-
quently improved Coopet's work by introducing nested stores to deal with quantifica-
tion in complex noun phrases (Keller, 1988). Many implementations use the storage
technique to deal with quantifier scope ambiguities.

In recent years, however, the use of stores has been largely superceded by an ap-
proach known as semantic underspecification. The key idea shared by these newer ap-
proaches is to represent the meaning(s) of an ambiguous human language expression

4 See (Gabsdil & Striegnitz 1999) for some nice examples.
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in a compact way by falking about the syntactic structure of the semantic representation. First-
order formulas, for example, can be regarded as trees. An underspecification formal-
ism for first-order logic would provide tools for stipulating how the various subtrees
in first-order representations should be nested. Nerbonne and Reyle seem to have
been the first to coin the term underspecification in connection with semantic repre-
sentations (Nerbonne 1992b, 1992a, Reyle, 1992, Frank & Reyle 1992, Reyle, 1993)5.
Let's look at an example. Here's Hole Semantics (Bos 1996) at work:
Every woman witnessed an accident.
< {ho, hy, ho, 11, 1o, 13},
{1;:" x(WOMAN(x)® hy), 1:$y(ACCIDENT(y)Uhy), 13:WITNESS(x,3) },
{Lifho, LEho, 1Eh1, 1Ehy } >

The underspecified representations in Hole Semantics are tuples consisting of a set
of entities (holes and labels), a set of labelled representations, and a set of scoping
constraints. Holes represent unassigned scope. Holes can be plugged with labels as
long as none of the constraints are violated. Scoping constraints are interpreted as
dominance relations on nodes of labelled semantic representations (that is, first-order
formulas viewed as trees). For example, the plugging that assigns 1 to ho I» to hi, and I3
to hy yields the reading where “every woman' out-scopes ‘an accident'. On the other
hand, the plugging that assigns b to hy, Ii to hy, and L5 to Iy yields the reading where
‘an accident' outscopes “every woman'.

Although these underspecified representations are more complicated than the logi-
cal forms we have used hitherto, such underspecified representations can be built us-
ing the machinery discussed in the previous section. Thus the use of hole semantics
requires little new machinery. Either the unification-based (Richter & Sailer 1997), the
lambda-based approach (Blackburn & Bos 2000, Bos, 2001), or linear logic (van
Genabith et al. 1999) can be adopted.

Referential (or anaphoric) ambiguities are another source of problems for compu-
tational semantics. Depending on the context and situation, pronouns, proper names,
definite description and other presuppositional expressions often have more than one
potential antecedent to refer to. How do we represent these context-sensitive expres-
sions, and how (and when) do we resolve them? Here's a (sketch of) one contempo-
rary answer to such questions. In a classic paper, van der Sandt proposed treating pre-
suppositional expressions on a par with anaphoric expressions (Van der Sandt, 1992)
and introduced an intermediate representation (an extension of DRS notation from
Discourse Representation Theory (Kamp, 1981)) which explicitly displayed all ana-
phoric information in unresolved form. Consider the following example:

Dan hasn't touched his bacon.

5 Further examples of the approach include Minimal Recursion Semantics (MRS) (Copestake et al. 1995,
Egg & Lebeth 1995), Pinkal's Underspecified Semantic Description Language (Pinkal 1996a, 1996b),
Muskens' Ambiguous Logical Forms (Muskens 1995), Constraint Language for Lambda Structures
(CLLS) (Egg et al. 1998) and work of several others authors, including Poesio (Poesio, 1994, 1996), and
Schiehlen (Schiehlen 1997).
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[{x},{DAN®) }Ja| £ {D[{z}, {MALE(z)] }a[{y},{BACON(y), OF
-2 Ha[{ A {TOUCH(xY)}]}]

All context-sensitive information is marked by the a-operator, where the left-hand
side DRS is the presuppositional information, and the right-hand side is the asser-
tional part.

Here we have the proper name ‘Dan', the definite noun phrase “his bacon', which

is lexically decomposed as “the bacon of him”, resulting in nested a-DRSs. It is left
open whether "Dan' refers to a previously mentioned entity in the discourse (ana-
phoric resolution), or whether it introduces a completely new object (accommoda-
tion). Similatly, whether “his bacon' refers to the bacon of Dan, or to somebody else's,
is left unspecified.

The resolution algorithm for such unresolved representations traverses the DRS
and decides, on encountering an a-DRS, whether to bind the anaphoric part to some
accessible discourse referents, or whether to accommodate it to some accessible por-
tion of discourse structure. Accommodation is possible either globally (that is, in the
main DRS) or locally (at subordinated levels of discourse). For instance, for the above
example, local accommodation of “his bacon' (in the scope of negation) would result
in an interpretation where Dan didn't have bacon for breakfast (as in "Dan hasn't
touched his bacon -in fact, he didn't have any bacon.")

We can't go deeper into this example, but three general points should be made.
First, we mentioned in Section 2 that contemporary computational semantics takes a
highly abstract view of representation; the use of DRSs annotated with special a-
markers to distinguish presuppositional information (and indeed, the hole semantics
example given eatlier) illustrate this trend. Second, despite appearances to the con-
trary, we are still engaged in essentially the same business we started with: glueing to-
gether (variants of) first-order representations. Finally, the ideas sketched in this sec-
tion have one over-riding virtue: they make good computational sense. On first en-
counter, the formalisms discussed here may seem complex. But they were designed
for robustly practical reasons: they make it possible to incorporate a serious semantic
component into large-scale grammars, and to use the result computationally. To give
one example, the DORIS system (Bos, 2001, Bos, 2003) combines all the ideas dis-
cussed so far, together with the inference techniques discussed in the following sec-
tion®.

4 Inference

Inference plays many roles in computational semantics. In disambigutation it is used
to filter out interpretations that make no sense, or to rank the likelihood of different
interpretations. In generation it is used to test candidate sentences for suitability in a
given situation. Many forms of inference (for example, probabilistic inference) are
relevant to computational semantics. Here we discuss logical inference, focussing on
the use of theorem provers and model builders.

6 You can expetiment with DORIS at www.coli.uni-sb.de/~bos/doris/.
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4.1 Theorem Proving

In Section 2 we gave model-theoretic definitions of consistency and informativeness.
The branch of logic called proof theory has developed many ways of recasting these
concepts as symbol manipulation tasks. In its simplest form, proof theory considers
the generation of formulas (theorems) from other formulas (axioms) using a set of in-
ference rules; the best-known inference rule is probably modus ponens (from {p® ¢,
p} detive ¢). Modern automated theorem provers use vastly more sophisticated strate-
gles than this, but in essence they are tools that use symbol manipulation techniques
to deal with the tasks of checking for consistency and informativeness.

Let F be a (finite) set of first-order formulas. Suppose we want to know whether
F is consistent. If we give @F (the negation of the conjunction of the formulas in F)
to a theorem prover, and the theorem prover finds a proof for this input, then we
know that F is noz consistent. (As it proved @F , this must be true in all models, hence
F is false in all models, that is, inconsistent.) On the other hand, suppose we want to
know whether F is informative. If we give F to a theotem prover, and the theorem
prover finds a proof for this input, then we know that F is 7o informative (as F was
proved, F is true in all models, hence uninformative). Summing up: theorem provers
offer us a negative handle on the problem of determining consistency, and on the
problem of determining informativeness.

As is well known, first-order logic is undecidable. This means that it is not possible
to write a theorem prover which, when given an arbitrary formula as input, is guaran-
teed to halt in finitely many steps and correctly classify the input as consistent or not
(or for that matter, as informative or not). Despite this, current theorem provers are
extremely efficient in practice, reaching levels of performance unheard of a decade
ago. Moreover, current resolution provers even cope with formulas containing the
equality symbol = (until recently, inference involving equality was difficult to handle
efficiently). As semantic representations for human language typically make heavy use
of equality, this is an important development.

Computational semantic applications for theorem provers include the implementa-
tion of the (negative parts of) the consistency and informativeness checks required by
Van der Sandt's presupposition resolution algorithm (Blackburn et al. 2001), and ques-
tion answering (Bos & Gabsdil 2000). Some examples of state-of-the-art theorem
provers are Vampire, SPASS, Bliksem, Otter, and Gandalf.

4.2 Model Generation

As their name suggests, model builders (or model generators) take a first-order for-
mula as input and attempt to build a (finite) satisfying model for it. Thus model build-
ers offer positive handles on both the consistency problem (if one successfully builds
a model for F, then F must be consistent) and the informativeness problem (if one
successfully builds a model for @F | then F must be informative). So model building
is complementary to theorem proving (which offers negative handles on both prob-
lems).
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Model building is a relatively new branch of automated reasoning, and model
builders haven't reached the performance levels of theotem provers. Nonetheless,
they have improved in the last few years, and are now starting to be useful in linguistic
applications. Examples of model builders are MACE, IGNCS, and Kimba.

The most obvious computational semantic applications for model builders is to
carry out positive tests for consistency and informativeness for such applications as
Van der Sandt's presupposition resolution algorithm (Blackburn et al. 2001), and ques-
tion answering (Bos & Gabsdil 2000). In fact the DORIS system (www.coli.uni-
sb.de/~bos/doris/) calls on both theorem proving and model building services to
carry out positive and negative consistency and informativeness checks in parallel.

4.3 Minimal Models

While the most obvious use for model builders is to use them in tandem with theorem
provers to perform consistency and informativity checks, this does not exhaust their
potential usefulness. It is also interesting to use model builders to construct models of
ongoing discourses (linguists may like to view such models as an intermediate level of
representation). Because models are ‘flat’, they are a level of representation from
which it is easy to extract content. Moreover, if a model builder finds a model for a
description it will typically find (one of) the smallest models possible; that is, it will
tind a minimal model.

Let's spell this out in a little more detail. Given a portion of discoutse D and a goal
G, the procedure we propose runs as follows:

1. Construct a first-order representation B for D, taking into account backgronnd knowl-
edge.
2. Attempt to build a model for F :
(a) Give B to a model builder, possibly resulting in a model M (for consistent rep-
resentations F ).
(b) Give DF to a theorem prover, possibly resulting in a proof (for inconsistent
representations F ). Fail.
3. Use M to extract information required for G.

Step 7 presupposes tools that construct semantic representations and carry out
ambiguity resolution (in short, the sort of tools we have been discussing in this paper)
together with parsers, speech recognisers and so forth; nowadays a wide range of such
tools are freely available.

We remark that the semantic representations we build need not to be in conven-
tional first-order syntax. For example, implementations of translations of DRSs to
conventional first-order syntax are available (Bos, 2001). Step 1 also presupposes that
a certain amount of background knowledge has been formalised in (some variant of)
first-order logic.

Step 2 attempts to construct a model for F. Ideally, it should be realized by run-
ning 2(a) and 2(b) in parallel. Theorem provers weed out inconsistent representations
F (the result of ambiguity resolution as patt of the previous step of processing might
result in several alternative representations, some of them inconsistent), and the model



42 Patrick BLACKBURN, Johan BOS

builders find minimal models for F. The concept of minimality is of importance here;
it ensures that no redundant information is incorporated in M.

Step 3, finally, links models to actions. That is, it uses the information provided by
the models to carry out certain tasks, such as database retrieval or the performance of
physical actions. Once you know what you'te looking for in the model, this is the easi-
est part of the procedure. For more sophisticated queries, one can also use a model
checker (Blackburn & Bos 2000).

To illustrate why this is useful, consider the sentence “The Boston office called.'
Thete are two semantical problems with this example. Offices do not “call', but of
course a human being on hearing this sentence unconsciously coerces “the Boston of-
fice' to “an employee of the Boston office' or “someone in the Boston office'. Second,
the relation between "Boston' and “office' is not specified in the compound nominal
(depending on the background information, it might mean either “office located in
Boston' or “office that handles Boston-related business').

Now, instead of trying to build some first-order tepresentation, let's apply the
above algorithm to generate a model that gives us a small “picture' of what seems to
be going on.

Let's suppose we have the following background information at our disposal:

{ BOSTON(b), OFFICE(0), IN(0,b), PERSON(p), EMPLOY (0,p),
" x" y(IN(,y)® NN(y,x)), " x" y(EMPLOY(X,y)® REL(y,X))}.
Then a minimal model for the knowledge base and the sentence would be:

D={b,o,p} F(boston)={b}

Flofficel={o}

F(person)={p}

F(in)={(o,b}}

Flemploy)={(o,pl}

E{rel)={(p,o)}

Flnn)={(b,o0)?

Flcall)={p}.

In a sense, we have used the model builder to “guess' what the wotld must be like
(given certain background information) for the sentence to be true’.

The idea of using model builders to “guess' pictures of the wotld has affinities with
a special kind of inference known as abduction. Abduction can be thought of as using
deductive rules backwards to provide explanations; for example, an abductive infer-
ence would use the information {p® ¢, ¢} to hypothesize p as a plausible explanation
for ¢ (for ¢ follows from p® g by modus ponens given p). In the "Boston office' ex-
ample, an abduction based approach would use the background information to build a
plausible first-order representation (Hobbs et al. 1990). For example, it might propose
this:

$x(PERSON(x) UCALL(x) Uy (REL (x,y) UOFFICE(y) Uz (BOSTON(2) UNN(z,y)))).-

7 Similar uses of model builders for discourse interpretation may be found in (Gardent & Webber 2001,
Richter & Sailer 2000, Gardent & Konrad 2000).
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The ideas underlying abduction and model generation algorithm are clearly rather
similar.

Their computational properties are slightly different though. In model generation,
alternatives are available until they become inconsistent. In weighted abduction, once
a proof is found, its result is stored in the knowledge base and reconsideration of the
proof is not possible anymore.

5 Conclusion

In this paper we have given an overview of computational semantics. Our account has
given a prominent role to logic, especially first-order logic: we've assumed that the
business of the computational semanticist is to build up detailed meaning representa-
tions for sentences, that these meanings will be represented in (some version of) first-
order logic, and that various forms of first-order inference will play a role in semantic
processing. We should emphasise, however, that other approaches are both possible
and interesting. For example, shallow processing and probabilistic inference may be
faster for many applications.

What of the future? Many strands of research (such as developments in lexical se-
mantics) are relevant to computational semantics, but in keeping with our logic-
otiented perspective we'll confine our discussion to likely developments in the area of
inference.

One emerging theme is the use of description logics. Description logics are re-
stricted fragments of first-order logic; they are typically decidable and some excellent
implementations exist. While they lack the expressive power to deal with natural lan-
guage semantics in full generality, for some applications they suffices. In such cases,
description logic based inference can be extremely efficient, and there will probably be
further experiments with their use in the near future.

Another theme is direct reasoning with underspecification formalisms. Is it possi-
ble to perform useful inference efficiently on such formalisms without expanding
them out??
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