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ABSTRACT: The aim of this paper is to elaborate a notion of explanation which is applicable to stochastic processes such
as quantum processes. The model-theoretic approach was adopted in order to delimit appropriate classes, by
defining set-theoretical predicates, of different kinds of physical transformations that quantum systems suffer,
either of transitions or of transmutations, by interaction or in a spontaneous manner. To explain a singular
quantum process consists in showing that it is feasible to model it as an indeterministic process of certain
specified kind.
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1. Introduction

The dominant conception, from a logical point of view, of the scientific explanation has
been syntactic. From Hempel, Popper, Braithwhite, Nagel to Railton it has be maintained
that the explanations of physical events consist in arguments, either deductive or induc-
tive, with scientific laws as their premises, universal or statistical, respectively. Salmon
(1977) abandoned this conception, criticizing it as a dogma of logical empiricism, and
worked out a theory of causal explanation, without offering, however, an alternative
view of the formal structure of explanations. According to Salmon (1981), to explain
physical processes is, ultimately, to fit them into structures formed by causal interactions
that produce marks and causal processes that propagate marks. In order to explain a
process it is neither necessary nor sufficient to derive a statement, describing it, from
a set of premises, but one must conceptualize the process to be explained as a process
that is caused by a physical interaction and capable of transmitting causal influences (for
a sound critique to Salmon’s causal theory see Dowe 2000).

In this paper a semantic or model theoretic approach has been adopted in order
to provide a concept of explanation, which allows for the modelling of singular quantum
processes as indeterministic processes, be they causal or spontaneous. Unlike Salmon,
instead of drawing a picture whereby the process to be explained or explanandum must
“fit” in a causal structure which plays the role of explanans, I maintain that it is feasible
to conceptualise the explanandum process in the case of quantum processes as a model of
a specific kind of indeterministic process, where the model takes the role of explanans.

In broad terms, the basic idea of explanation that I outline here consists in that ex-
plaining a singular quantum process is tantamount to modelling it as stochastic process,
whose random transformations either are caused by certain physical conditions, respon-
sible for production of the process, or stem from a certain physical situation when the
process is not produced but rather occurs in a spontaneous manner; appealing, in both
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cases, to the nomological statements that assigns probabilities to each of the alternative
effects or results of the transformation.

Although it is not syntactical, the present proposal shares withHempel’s nomological
model the thesis that lawful statements are involved in all scientific explanations; in this
sense, it is similar to that model in that it is a covering law view of explanation.

2. Some Causal Theories

Several theories of causality have been proposed which were intended to cover broad
domains of application, perhaps unconstrained, in the physical world.Nevertheless, some
of these theories that stand out cannot succeed in including spontaneous indeterministic
processes, such as radioactive decay, in the quantum domain, because they are not
productive processes. In order to clear the grounds for the introduction of some notions
adequate for processes whose initial physical conditions do not produce alternative
random effects but only give rise to them, a very broad review of three of those theories
is presented here: The probabilistic theory of causality by Patrick Suppes (1970), the
causal-mechanics theory by Wesley Salmon (1981) and the conserved quantity theory by
Phil Dowe (2000). These authors assume the quantum indeterminism and recognize the
irreducibility of quantum probabilities; hence it is pertinent to consider their theories
here.

Suppes’s starting point is the basic idea that causes increase the probability of effects,
and the stipulation that the conditional probability of effect E, given cause C , is greater
than the absolute probability of the effectE. In order to ensure thatC is a genuine cause,
and not a spurious one, of E, Suppes introduces the additional condition that there is
no event F prior to C such that F screens C off from E because the conditional
probability of E given both C and F equals the conditional probability of E given
only F . A concise formulation of this notion of genuine cause is as follow (see Suppes
1970, pp. 12, 21 and 22):
Let Et, and Ct′ be events, with t′ < t, such that P (Ct′) is positive. Then Ct′ is a genuine
cause of Et if and only if
(1) P (Et | Ct′) > P (Et).
(2) There is no event Ft′′ with t′′ < t′, such that P (Ct′ , Ft′′) > 0 and

P (Et | Ct′ , Ft′′) = P (Et | Ft′′).

The clearest quantum example that contradicts Suppes’s theory is given by Salmon:
Suppose we have an atom in an excited state to which we shall refer as the 4th energy level. [...] Let
P (m → n) stand for the probability that an atom in the mth level will make a direct transition
to the nth level. Assume that the probabilities have the following values:

P (4→ 3) =
3

4
P (3→ 1) =

3

4

P (4→ 2) =
1

4
P (2→ 1) =

1

4

P (3→ 2) = 0
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It follows that the probability that the atom will occupy the 1st energy level in the process of
decaying to the ground state is 10

16
; if, however, it occupies the 2nd level on its way down, then

the probability of its occupying the 1st is 1
4
. Therefore, occupation of the 2nd level is negatively

relevant to occupation of the 1st level. Nevertheless, if the atom goes from the 4th through the 2nd

to the 1st level, that sequence constitutes a causal chain, in spite the negative statistical relevance
of the intermediate stage. (Salmon 1984, pp. 200-201)1

That is, if it is assumed that occupying the second level is the cause C of occupying
the first level E, then the conditional probability of E given C , P (E | C) = 1

4 , is
not greater than the absolute probability of E, P (E)

(
= 10

16

)
, and thus the former

condition (1) fails.
From the former, it is noticeable that Suppes’s demand, that the cause raise the

probability of the effect, is too strong for the quantum domain, because it excludes some
quantum processes, such as the previous, from the class of causal processes. The notion
proposed here only requires the conditional probability of the effect, given the cause,
to be positive (less that the unity), and it becomes weaker than Suppes’ notion, but safe
against the previous objection, because it includes a Markovian condition, which entails
the intransitivity among indeterministic processes.

Salmon assumes a process ontology; entities that exhibit persistence of structure in
a space-time interval, like waves, elementary particles and classical bodies. The processes
that are capable of transmitting marks or local signals constitute causal processes while
those that are incapable of doing so, such as shadows, are pseudoprocesses (see Salmon
1981, p. 286).

The causal processes propagate their own structure from one space-time region
to another and hence are capable of transmitting causal influence. If a pair of causal
processes overlap in a space-time point, each one is marked and marks the other, that is
to say, both suffer a modification of structure, which constitutes a causal interaction. In
general, causal processes transmit physical magnitudes such as charge, momentum and
energy, whose values define its ‘structure’.

Causal processes do not produce causal influence but only transmit it. The produc-
tion of causal influence is in charge of causal interactions, in which the exchange of an
amount of the former magnitudes takes place, according to the conservation laws of
physics.

Salmon defines the fundamental idea of causal interaction as follows:
CI: Let P1 and P2 be two processes that intersect with one another at the space-time point
S, which belongs to the histories of both. Let Q be a characteristic that process P1 would
exhibit throughout an interval (which includes subintervals on both sides of S in the history of
P1) if the intersection with P2 did not occur. Let R be a characteristic that process P2 would
exhibit throughout an interval (which includes subintervals on both sides of S in the history
of P2) if the intersection with P1 did not occur. Then, the intersection of P1 and P2 at S
constitutes a causal interaction if: (1) P1 exhibits the characteristic Q before S, but it exhibits a
modified characteristic Q′ throughout an interval immediately following S; and (2) P2 exhibits
the characteristic R before S, but it exhibits a modified characteristic R′ throughout an interval
immediately following S. (Salmon 1984, p. 171)

1 Salmon points out that although this example is fictitious is similar to term scheme of actual atoms.
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In Salmon’s theory these two types of mechanisms, propagation and production,
constitute the causal structure of the physical world, which forms the basis for the
explanation in causal terms of the processes within the domains of physical theories.

A clear counterexample for that causal theory has been presented by Dowe:
[W]e would like to be able to include in any definition of causal interaction types of interactions
other than those that produce modifications to two processes. [...] A genuine example of a Y -type
interaction is the decay of radium-226 to radon:

226
88Ra→ 222

86Rn+ 4
2He

Salmon himself expresses a desire to incorporate λ-type and Y -type interactions (1984:182).
Unfortunately, Salmon’s causal interactions are defined in terms of two and only two processes.
(Dowe 2000, p. 83)2

In this manner, Dowe argues, the reason why this type of disintegration process does
not qualify as a causal interaction in Salmon’s sense is the restriction imposed on the
formulation of that notion to two and only two processes, either incoming or outgoing.

Dowe does not stipulate any probabilistic relation between causes and effects but
rather puts forward the general idea that a physical interaction is causal if an exchange
of a conserved quantity between the objects or processes involved occurs. A conserved
quantity, says Dowe, is any magnitude ruled by a conservation law in the available
physical theories. Thus, mass/energy, momentum and charge are conserved quantities.
The nucleus of Dowe’s theory can be expressed by the following two clauses:

CQ1. A causal process is a world line of an object that possesses a conserved quantity.
CQ2. A causal interaction is an intersection of world lines that involves exchange of a conserved
quantity. (Dowe 2000, p. 90)

The primitive notions of clause CQ2 are those of world line, intersection and
exchange of a conserved quantity. Dowe explains this as follows: “A world line is the
collection of points on a space-time (Minkowski) diagram that represents the history
of the object.”; “An intersection is simply the overlapping in space-time of two or more
processes.”, finally, “An exchange occurs when at least one incoming, and at least one
outgoing process undergoes a change in the value of the conserved quantity.” (Dowe
2000, pp. 90, 91 and 92, respectively).

The former notion of causal interaction is not free of quantum counterexamples.
As has been seen, Dowe objects to Salmon that the processes of radioactive decay do
not fulfill his notion of causal interaction. This is correct, but it is surprising that just
this same example does not satisfy the clause CQ2 of Dowe either, and precisely for
the same reason, namely, that he requires as a necessary condition for qualifications as a
causal interaction that two, or more, processes intersect, i.e., that they overlap in a region
conformed by all the points that are common to both (or all) processes.

It is astonishing that Dowe uses this same type of process as an example of his
own notions. Below, and after the reproduction of that example of radioactive decay, he
argues that: “This qualifies as a causal interaction by CQ2 because there is an exchange

2 Note that Salmon’s causal interactions are allX-type.
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of charge, where the charge of the incoming process is divided between the two outgoing
processes.” (Dowe 2000, p. 93). Certainly, Dowe is limiting his notion of causal interaction
to the requirement that at least one of the incoming processes and at least one of the
outgoing processes suffer a modification of a conserved quantity, which is fulfilled by
the former example, but he also demands that an inter -action occurs for at least two
incoming processes.

As we have seen, the processes of spontaneous disintegration present a problem
for causal theories, and Dowe’s theory is not the exception. The previous objection
may be decisive or not; what I try to show, however, is that spontaneous processes
entail a challenge to any causal theory in the physical world, if it is intended to reach
the quantum domain. Still, in any case, the point to remark on here is that, because of
their generality, the former three causal theories are not capable of accounting for the
peculiarities of quantum processes, when they exhibit random behaviors. This is mainly
due to the following two reasons. Firstly, they do not make any distinction between
deterministic classic interactions, of the X-type, such as the collision of two billiards
balls, and indeterministic quantum interactions, of theX-type, such as the fusion process.
Secondly, they do not depict that in the same physical conditions, in several individual
trials, quantum systems of the same kind transform randomly in different routes.

3. Quantum Processes to Be Explained

Instead of assuming an ontology of events, like Hempel, or one of processes, like Salmon,
I will assume an ontology of systems—i. e., sets of non separable elementary particles—
because quantum processes can be considered to be transformations of quantum systems
and these will be the physical entities to be explained.

From the perspective of the type of natural transformations that quantum systems
endure, two kinds of processes may be distinguished: transformations by transition,
which consist in the change of state of the system via a modification of the value of at
least one magnitude or state variable of the system, and transformations by transmuta-
tion which consist in the conversion of the system itself into another type of system.
The Compton Effect and the quantum jumps are examples for the former, while nu-
clear fission and fusion, radioactive decay and the annihilation of elementary particles
are cases of the latter. This classification of natural quantum processes concerns how
the systems transform but does not address why they do so. From the last perspective,
quantum systems transform by interactions among particles and spontaneously, without
the intervention of any factor that effect it. According to this, we may classify natural
quantum processes into two sorts: transformation by interaction and spontaneous trans-
formation. The Compton Effect, nuclear fission and fusion and particles annihilation are
transformations through the interaction between particles, while discontinuous change
of energy (quantum jumps) and the decay of radioactive elements are spontaneous trans-
formations. Since the purpose here is to lend support to explaining natural quantum
processes as stochastic processes, hereon the latter classification has been chosen but
combined with the first in such a manner that four kinds of quantum processes result:
(1) transition by interaction, (2) transmutation by interaction, (3) spontaneous transition
and (4) spontaneous transmutation.
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In order to be in a position to model singular processes as indeterministic processes
a double task must be undertaken: first, to define a general notion of stochastic or
indeterministic process that expresses the non deterministic but rather random behavior
of quantum systems and, second, to characterize appropriate notions that allows for
individualized quantum processes for each of the former kinds of transformations. The
four specific notions of an indeterministic process are subsumed in one general notion
of stochastic process and, hence, the models of this latter general notion are candidates
for models of some of those specific notions.

The formulation outlined below, concerning that notions, follows the strategic lines
sketched by Suppes (1957) to define a set-theoretical predicate in order to delimit a
class of models as well as to use a scientific theory with the purpose to analyze causal
connections and make causal claims (Suppes 1970, p. 13 and 1984, p. 52).

I wish to subscribe to Suppes’s thesis, whereby the meaning of model, as defined by
Tarski, is the same for diverse fields but what differs are rather the uses of that concept
between one field to another (see Suppes 1960), and sustain, in this vein, that to claim
that a singular physical processes is an indeterministic processes, causal or spontaneous,
of some specific kind it is required: (i) to define a set-theoretical predicate for an
appropriate notion; (ii) to construct a set-theoretical structure from the descriptions that
physics provides for it; (iii) to demonstrate that this structure is a model of the predicate
defined, in the logical sense, and (iv) to exhibit that the structure is a model for the physical
process, that it fits the structure.

Physical systems may be represented as structures of the form S = 〈P,M〉whereP
is a set of non-separable elementary particles and M is a set of magnitudes or state
variables (such as energy, momentum, charge, and position) which intervene in the
probabilistic specifications of the states of the system S, where eachMi inM is a state
variable associated with a spectrum of possible values in a Borel set of the real numbers.
It is convenient to specify the central notion of state description of a physical system:
“By the static description of a physical system we mean the rules that assign specified
mathematical objects to the states and to the physical quantities of the system, and the
prescriptions for calculating the probability distribution of the possible values of every
physical quantity when the state of the system is given.” (Beltrametti and Cassinelli 1981,
p. 3).

This notion applies to system states in a given moment t, specifying probability
values to the physical quantities relevant for the description; thus, those quantities are
probabilistic state variables. With regard to the evolving over time of quantum systems,
which Schrödinger wave functions describes deterministically, one must assume the
probabilistic interpretation of such wave functions, proposed by Born, in order to
depict the rather random behavior of quantum systems. That probabilistic version of
wave functions renders the random manner in which quantum systems transforms by
assigning a probability to every component of the superposition of states of the system,
which Schrödinger equation implies. Consistently with this, one may say that given
a system in a certain state, its transformation is not deterministic to a unique future
state, which is physically necessary, but rather it is physically possible, that the system
transforms alternatively to various different future states in a random manner. Quantum
theory provides the distributions of probability for such transformations that assigns
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probability values to the alternative states within a range of physically possible final
states.

4. Formal Definitions and Models

All the aforementioned quantum processes exhibit a peculiar random behavior. In
order to express it, I introduce a definition of a notion of stochastic or indeterministic
physical processes. The quantum processes that fulfill that definition can be modeled as
stochastic processes.

First, let it say that, the probabilistic state description of a quantum system S stands
for physically possible events in S, which here are denoted by d(S). A physical process
in a system S, during a time lapse from t to t′, consists of a transformation of the system
such that the description of S in t is different from the description of S in t′, i. e.,
d(S)t 6= d(S)t′ .

Definition 1. Let P be a physical process in a system S. Then P is a stochastic (or indeter-
ministic) process only if

(1) P = 〈d0(S)t, {d1(S)t′ , . . . , dn(S)t′}〉 such that

(2) d0(S)t depicted the system S at a given time t and {d1(S)t′ , . . . , dn(S)t′} is the range R
of the descriptions of S, in a posterior time t′, that corresponds to possible future events, which are
alternative and mutually exclusive, in S.

(3) For any event di(S)t′ in R, P
(
di(S)t′ | d0(S)t

)
is a positive real number less than 1, and

in case that the set R is exhaustive:
∑

P
(
di(S)t′

)
= 1, with i = 1, 2, . . . , n.

(4) For any event d(S)t′′ temporally prior to d0(S)t, the following equality is satisfied:

P
(
di(S)t′ | d0(S)t

)
= P

(
di(S)t′ | d0(S)t, d(S)t′′

)
=

= P
(
di(S)t′ | d0(S)t,−d(S)t′′

)
.

This notion involves, that it is probable that a random transformation of the systemS
occurs, from a given event d0(S)t to one of the various later possible event di(S)t′ in
R. The first clause specifies the set-theoretical structure of the physical process that
would be stochastic, if the other three clauses are satisfied. The second one means,
that the correspondence between the initial state and the events in R is one to many,
while the third one expresses, that the occurrence of the initial event is not sufficient in
order for the system to transform in an univocal manner to one of the posterior states,
because none of those states has a probability equal to the unity. Finally, the fourth clause
stipulates the Markovian property of a stochastic process, that is, if d0(S)t is the present
state of a system S, then the future transformation of S is defined only for d0(S)t in
such a manner that it is independent of the preceding states of d0(S)t or, better, if the
description of the present state is complete, then the evolution of S or its conversion to
another type of system is independent of how S has become the state d0(S)t, which
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means, that the probabilities that the theory assigns to each di(S)t′ inR, do not depend
on any event d(S)t′′ prior to d0(S)t, from which the system has transited or transmuted
to the present state d0(S)t.

It is necessary to briefly discuss a question that Hempel set forth as a condition for
statistical explanations, namely, the high probability requirement, which might represent
a potential objection to the proposal stated herein. According to this requirement, in
order to explain an event, it is necessary that the probability value of the statistical law,
which is part of the explanans as a major premise, is high, close to the unity. Otherwise,
if that probability value is low, the event does not admit of an explanation; further, if
there are two alternative and exclusive events, each equally probable, then neither can be
explained. The consequence of such a requirement in the quantum domain is immediate:
a variety of kinds of quantum events and processes whose probability values are not
high but middle or low, lack an explanation.

Since that condition is too strong and restrictive, it may be expected to be rejected,
as Salmon in effect does: “If one and the same probability distribution over a given
partition of a reference class provide the explanation for two separate events —one with
a high probability and the other with a low probability— the two explanations are equally
valuable.” (Salmon 1984, p. 89). The fact that innumerable cases of singular quantum
processes have a low probability value is no obstacle for their eventual explanation.
Thus, for example, in the case of a radioactive decay of polonium-216 to lead-212 or to
astatine-216 —whose respective probabilities are 0.99987 and 0.00013—, if a model is
adequate to account for the first process as an indeterministic process, then this same
model is likewise adequate to account for the second as an indeterministic process, no
matter how unlikely it is.

There is a broad spectrum of quantum processes that could be modeled by this
notion, because they all have a random character, which makes them candidates for such
stochastic processes.

In the transformations of transition by interaction, where the system develops from
the present state to one of the various later states, the particles of the system do not
undergo any conversion, while some of its magnitudes will change, varying its values.
The Compton scattering is an example of this: the photon and the electron that suffer
a collision persist as such after the impact, while the energy and momentum of both
change and adopt different values within ranges of possible values.

In a system which is composed of an electron and a photon and whose state d0(S)t

at the moment of the collision, is defined by the values of energy and momentum, each
di(S)t′ represents a physically possible event in R after the impact, which corresponds
to a change of the values of those relevant magnitudes within its respective ranges.
Thus, it is possible to construct a set-theoretical structure of the form of the clause (1),
which at the same time fulfills the clause (2). As all the events di(S)t′ have a positive
probability value, less than 1, also clause (3) is satisfied. The satisfaction of clause (4)
resides in the fact, that the future transformations of the system, given the state d0(S)t ,
are independent of any event prior to it, in particular, of how either electron and photon
have adopted their respective values of energy and momentum before the collision. In
this manner, a model of the former notion of stochastic process may be obtained, which
furthermore models this kind of physical processes.
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The transformation of transmutation by interaction differs from the former, in that
the elements of the system themselves convert into other elements. Fusion processes
exemplify this. In the case of a fusion of two deuterons, 2

1d+ 2
1d, it is physically possible

for a transformation to occur by either of two routes: the formation of a nucleus 3
2He, a

light isotope of helium, plus a neutron, or the formation of a triton plus a proton. Both
alternative routes are about equally probable, with exclusive and exhaustive results.

This kind of physical processes can be modeled as indeterministic processes as
follows: The two deuterons form the set of particles P that, together with the relevant
magnitudes (charge, energy and momentum), form a physical system S. The process
P is formed by the state description of P at the moment of the interaction, which
corresponds to the initial event d0(S)t, and by the results 3

2He + n and 3
1t + p which

constitutes the rangeR. The first clause is fulfilled, because 〈 2
1d+ 2

1d, { 3
2He+n, 3

1t+p}〉
is a structure such as specified by it. With regards to the second one, we shall consider,
that the first element of that pair stands for the state of the system at the time t, at which
the conversion of the same takes place and, that the two descriptions in the second
element refer to the transformations of the system, at a later time t′, which are physically
possible, given d0(S)t. The probabilities of these last two results are positive and its
addition is equal to the unity, which fulfills the third clause. Lastly, the fourth clause is
satisfied because, again, the transformation of the system, given the event described by
d0(S)t, is independent of the previous events the pair of deuterons comes from.

In these two kinds of transformations it is feasible to recognize certain events —
physical interactions—, which may be considered to be the causes, which produce the
modification of the systems. A notion of causal interaction, different from those in
Salmon’s notion, which do not involve the persistence of structure but only space-time
continuity, would be adequate for characterizing the connection between the original
system and the modified system in causal terms, either in a transformation of transition
or of transmutation. A pair of necessary conditions would consist in that, first, in the
cases of transformations by interaction, a space-time intersection of the particles of
the original systems occurs and, second, in general, that the description of the original
system is different from those of the system outcome of the transformation.

Such stochastic processes of either transition or transmutation would be considered
of as indeterministic causal processes, wherever there is an event that provokes the system
transformation in a random manner, adopting one of the possible alternative results.

The indeterministic character of certain quantum processes lies in that the event
that gives rise to a process does not determine the transformation to a unique physically
necessary result. One would attribute a causal nature to such processes, granted that
the initial event produces the transformation of the system. This may be said of certain
processes such as the Compton Effect and nuclear fusion, because one would think,
that the physical interactions that occur among the particles that form the respective
systems —the events in which the processes arise—, produce the state that the system
later adopts or the conversion that the system undergoes.

However, cases of quantum processes such as radioactive decay contradict the idea
of production as a means of explaining them as indeterministic causal processes, and
hence, it is only feasible to claim that under certain physical conditions of some quantum
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systems, it is probable that these processes arise, without demanding any factor that
produces it. The unstable nature of radioactive elements —because of their atomic
constitution— gives rise to, but does not produce their decay. For this kind of processes,
a notion of spontaneous transformation may be obtained if one recognizes that the
physical condition of the system in a temporal lapse gives rise to its conversion.

In view of the above, the notion of physical conditions that give rise to the different
kinds of transformation must include events of physical interaction as well as sponta-
neous events. Consequently, I will define below adequate notions, under which a variety
of quantum processes may be subsumed, both induced by interactions and spontaneous.

For causal transformations, both transitions and transmutations:

Definition 2. Let P be an indeterministic process. Then, for every di(S)t′ in R, the pair
〈d0(S)t, di(S)t′〉 is a singular causal indeterministic process only if:

(1) The transformation d0(S)t → di(S)t′ is prescribed probabilistically by a specific lawful
statement.

(2) The transformation d0(S)t → di(S)t′ involves an interaction between, at least, two particles in
the system S.

If that transformation is merely a change in the values of some magnitudes, we say
that it is a transition by interaction process. If, in addition, that transformation involves a
conversion of some particle inS into another type of particle, it is said to be a transmutation
by interaction process.

As for spontaneous transformation, both transitions and transmutations:

Definition 3. Let P be an indeterministic process. Then, for every di(S)t′ in R, the pair
〈d0(S)t, di(S)t′〉 is a singular spontaneous indeterministic process only if:

(1) The transformation d0(S)t → di(S)t′ is prescribed probabilistically by a specific lawful
statement.

(2) The transformation d0(S)t → di(S)t′ occurs in an spontaneous manner, without the intervention
of any factor that effect it.

We say that the transformation is a spontaneous transition process if the systemS suffers
just a change of some of the magnitudes. In case that the transformation involves, as well,
a conversion of some particle in S to another type of particle, it said to be a spontaneous
transmutation process.

The former specifications of the general notion of stochastic process, which appeals
to specific lawful statements, are intended to apply to singular quantum processes. This
is suitable to explain singular processes since as Hanson has noted: “[...] there should be
one basic equation for every type of particle, not for every individual particle.” (Hanson
1959, p. 357); and it seems that it is the most that can be done, because as van Fraassen
argued: “[...] any explanation of an individual event must be an explanation of that event
qua instance of a certain kind of event, nothing more can be asked.” (van Fraassen 1993,
p. 282).
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The Compton scattering above was modeled as an indeterministic process. In order
to see, that it is also a model of the former notion of transition by interaction process,
let it suppose that a particular dk(S)t′ in R is the case, then the pair 〈d0(S)t, dk(S)t′〉
is modeling a singular process where dk(S)t′ differs from d0(S)t, in that the values
of the relevant magnitudes —say, energy and momentum— of both particles have
changed according to a probabilistic lawful statement, fulfilling the condition for being
a transition process and the first clause. The satisfaction of the second clause follows
from the fact that the collision of the electron and the photon is an interaction that
provokes the transformation of the two-particle system. In this way, scattering processes
may be modeled as causal indeterministic processes.

Also in the second kind of transformation, causal transmutation of a system (e. g.,
fission and fusion), a physical interaction is involved, but with the difference that the
system itself is converted. In order to exhibit a model of the Definition 2 for this kind
of transformation, the previous example of fusion reaction can be used again. It has
been seen that the structure 〈 2

1d + 2
1d, { 3

2He + n, 3
1t + p}〉 is a model of the notion

of indeterministic processes, where the random transformations 2
1d + 2

1d → 3
2He+ n

and 2
1d + 2

1d → 3
1t + p are about equally probable. In an individual system, each pair

〈 2
1d + 2

1d, 3
2He + n〉 and 〈 2

1d + 2
1d, 3

1t + p〉 is modeling a singular indeterministic
causal process, particularly of transmutation by interaction. With respect to clause (1),
the former random transformations are prescribed by a quantum lawful statement as
probable and with respect to the condition for being a transmutation process, notice that
the second member of both pairs differs from the first in that, as a result of the fusion,
the two deuterons convert into a different kind of element, along with an exchange
of energy. Since the encounter of the two deuterons qualifies as a physical interaction,
clause (2) is fulfilled.

In the third kind of transformation, which consists of the spontaneous transition of
a system from an given state to one of the alternative final states di(S)t′ (e. g., jumps
of electrons from an energetic level to a lower one), d0(S)t consists in a spontaneous
event which modifies the state of the system.

To outline a model of the notion of spontaneous indeterministic process, particularly
of the notion of spontaneous transition, let us suppose an excited atomic particle p in state
Zl with energyEl that will descend spontaneously to the ground state, either to stateZm,
with energy Em, or to state Zn, with energy En, such that El > Em > En. Thus,
the transitions of the energetic state of the atom are Zl → Zm and Zl → Zn, with an
amount of energy emitted El − Em and El − En, respectively.

The corresponding physical system is represented by 〈p, E〉 while the process by
〈Zl, {Zm, Zn}〉. The conditional probabilities P (Zm | Zl) and P (Zn | Zl) are positive
and, if the state Zl of p has not been induced by a radiation bundle, their values are
independent of any event prior to the initial state Zl of the system under consideration.
The former satisfies Definition 1 above. With respect to Definition 3, those random
transformations are prescribed by a probabilistic lawful statements and the value of the
magnitude energy, in each singular case, is modified at the time of emission, satisfying the
first clause and the condition of being a transition process. To fulfill the second clause,
the state Zl of p may be considered to be the event that gives rise to the spontaneous
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transitions of energy. In this way, the pairs 〈Zl, Zm〉 and 〈Zl, Zn〉 are modeling the two
singular processes of change of energetic level, and each is a spontaneous transition
process with respect to the third definition.

Finally, we have the fourth kind of transformation, spontaneous transmutation of
a system. The disintegration of radioactive element bismuth-212 may be modeled, in
accordance with this last notion, as a spontaneous transmutation process. In this kind
of process, the bismuth, 212

83Bi, can decay by two alternative routes: a negative decay β,
which converts to polonium, 212

84Po, or a decay α, which converts to thallium, 208
81TI. In

both cases, the charge, number of protons, of the original element is modified. In the
first instance, a neutron is converted into a proton and a beta particle, 1

0n → 1
1p+ 0

−1e,
increasing the charge in one proton, while in the second instance, an alpha particle, 4

2He,
is emitted, diminishing the charge in two protons. The transmutations arise from the
change of the charge since the number of protons, which is equal to the atomic number,
defines the elements.

The physical system is formed by the bismuth-212 and the values of the charge mag-
nitude (subscript) and the atomic mass (superscript), along with the values of energy and
momentum, that is, S = 〈 212

83Bi, {Z,A,E, m}〉. The physical process is conformed by
the original element and the two elements, which result from the possible transmutations,
that is, P = 〈 212

83Bi, { 212
84Po, 208

81TI}〉. The corresponding conditional probabilities are
approximately P ( 212

84Po | 212
83Bi) = 0.663 and P ( 208

81TI | 212
83Bi) = 0.337.

From the former, a model of the notion of stochastic or indeterministic process
may be obtained. First, the process P has the set-theoretical structure specified by the
clause (1). The set { 212

84Po, 208
81TI} is the rangeR of the alternative possible future events

given the initial description of bismuth-212, corresponding to clause (2). The probabilities
of both transmutations are positive, and when added together will equal 1, which fulfills
clause (3). The satisfaction of the fourth and last clause resides, in that the former
probabilities of the two possible transformations are the same, whether the bismuth-212
comes from an astatine element, 216

85At, by α-decay, or from a lead element, 212
82Pb, by

β-decay, that is:

P
(

212
84Pot′ | 212

83Bit
)

= P
(

212
84Pot′ | 212

83Bit,
216
85Att′′

)
= P

(
212
84Pot′ | 212

83Bit,
212
82Pbt′′

)
= 0.663;

P
(

208
81TIt′ | 212

83Bit
)

= P
(

208
81TIt′ | 212

83Bit,
216
85Att′′

)
= P

(
208
81TIt′ | 212

83Bit,
212
82Pbt′′

)
= 0.337 .

This is an expression of the fact that the probabilities for a bismuth atom to trans-
form, be it into one of polonium or be it into one of thallium, are independent of whether
it is derived from a transformation of an atom of astatine or from a transformation of
an atom of lead.

The former shows that this disintegration process may be modeled as an indeter-
ministic process and, at the same time, that it is a candidate for modeling a process of
spontaneous transmutation. The satisfaction of clause (2) of Definition 3 is settled for the
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former, if it is acknowledged that the unstable state of the original element bismuth-212
corresponds to the physical condition that allows for the spontaneous decay process to
begin at a certain moment in time, either by negative beta decay or by an alpha decay. The
lawful statements that prescribe the two possible transformations of the original system
are: β : 212

83Bi → 212
84Po + 0

−1e and α : 212
83Bi → 208

81TI + 4
2He, with the respective

probabilities 0.663 and 0.337, which satisfy clause (1). With respect to fulfilling of the
condition for being a transmutation process, the description of the transformed system
differs from the description of the original system, in that the bismuth-212 particle is
converted into a particle of another type of element, along with a modification of the
value of the charge magnitude. This shows that the structure 〈 212

83Bi, { 212
84Po, 208

81TI}〉
is a model specifically of the notion of spontaneous transmutation process, where the
pairs 〈 212

83Bi, 212
84Po〉 and 〈 212

83Bi, 208
81TI〉 model the two singular alternative decays.

The subsumption relationship among the models of the different kinds of processes
defined here may be summarized in the following schema:

Assuming the irreducibility of quantum probabilities, the present proposal has been
worked out in order to model certain quantum processes as stochastic processes, either
causal or spontaneous. Explaining a singular quantum process consists in showing that
it can be modelled as an indeterministic process of a specific kind which always involves
a lawful component. The model theoretic explanations proposed acquire power from
the lawful nature of quantum probabilities and its objective character resides in the
conceptualist thesis of Roberto Torretti that: “Falling under general concepts is the very
mark of objectivity.” (Torretti 1990, p. 175).

As is known, the statistical interpretation of probability, which is adopted by both
Suppes and Salmon, is meaningless for individual cases, as a consequence of its own
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definition in terms of relative frequencies. Moreover, at the present time, experiments
with an individual atom can be performed, hence it is not applicable empirically either.
It come out to be unavoidable, to give probability statements interpretations that render
particular statements both meaningfully and empirically appropriate for singular quantum
processes or events.

The interpretation of probability as degree of physical possibility, which I proposed
elsewhere (Rolleri 2002) and is applicable to singular cases, has been assumed herein.
According to this, the intended meaning of the probabilistic statements consists in
that a conditional probability like P (dk(S)t′ | d0(S)t) = r expresses, in quantitative
terms, the degree of the physical possibility that the event described by dk(S)t′ occurs,
under the condition that the event described by d0(S)t occurs; or that, given d0(S)t,
the occurrence of dk(S)t′ is physically possible to a degree r. Thus, the basic notion
of stochastic process intends to assert that, given the initial state of a system S, it is
physically possible that any event in the rangeR occurs; provided they all have a positive
probability value —with different or equal degrees, low or high, does not matter. This
aims to express the stochastic character of quantum processes; the occurrence of the
event d0(S)t displays a spectrum of alternative events, each of them physically possible,
which occur in a random manner, but according to a probabilistic lawful statement.

5. Conclusion

What kind of explanation, if any, do the notions and its models proposed herein provide?
In a similar way to the Laplacean explanations of Classical Mechanics events, there are
modal, epistemic, nomological and ontic ingredients mixed in those notions. However,
the modal element prevails, since the interpretation of probability statements intended
above and the proposed explanations have a rather modal character. The epistemic el-
ement becomes manifest in the impossibility of avoiding the uncertainty in the state
descriptions of quantum systems. The nomological ingredient comes from the para-
mount role of scientific laws in accounting for physical events and processes. The ontic
element is rather a thesis about how physical systems are transformed. The ontological
thesis consists in that there is a probabilistic regime in quantum domain, according to
which the random transformations of quantum systems are prescripts by probabilistic
lawful statements.

Salmon rejects all modal explanations of indeterministic processes. From the re-
mark that under the modal conception, “[...] scientific explanations do their jobs by
showing that what did happen had to happen” (Salmon 1985, p. 320), he concludes that:
“This [modal] conception seems to be impaled on the horns of a trilemma: one must
either (1) make an a priori commitment to determinism; (2) admit degrees of necessity;
or, (3) grant that, to the extent that there are irreducibly statistical occurrences, they
are inexplicable.” (Salmon 1985, p. 322). As we can see, Salmon considers only the
modality of necessity and overlooks possibility. The consequence of regarding that the
irreducibly probabilistic quantum events and processes as inexplicable can be avoided
by breaking the second horn of that false trilemma, accepting degrees of possibility for
contingent events and processes and representing quantum probability statements as
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the expressions of the degree of physical possibility of random events and stochastic
processes.

From the representation approach to probability (cf. Suppes 1974) assumed here,
the usual philosophical view on necessity and possibility modalities that considers it as
dual operators, mutually definable, has no relevance, since physical necessity corresponds
rather to the upper bound of a closed interval. That is to say, within the extremes of
a scale from physical necessity —corresponding to a probability equal to the unit— to
physical impossibility —corresponding to the zero probability—, there is an interval
of physical possibilities, which is the base for representing probability functions as the
quantitative expressions of the degrees of those possibilities. For this reason, there is no
demand for admit degrees of necessity.

Finally, we can understand, and eventually explain, that random events occur because,
relatively to a scientific theory, it is physically possible that they occur. It can be said
that scientific theories do their job of explaining by showing that what did happen could
happen.
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