

ISSN: 0214-9001 e-ISSN: 2444-3255 ©UPV/EHU Press

Kondentsatu dipolar luzanga baten superjariakin-supersolido trantsizioa zeharkatuz

(Crossing the superfluid-supersolid transition of an elongated dipolar condensate)

*Aitor Alaña** Fisika departamentua, Euskal Herriko Unibertsitatea, UPV-EHU Leioa

LABURPENA: Tranpa luzanga batean harrapaturiko gas kuantiko dipolar batean fase trantsizio kuantikoa ikertzen dugu teorikoki, superjariakin eta supersolido faseen artean, orain dela gutxi eginiko esperimentu baten inguruan dugun ezagutza sakontzeko asmoz, G. Biagioni et al. [Phys. Rev. X 12, 021019 (2022)]. Horretarako Gross-Pitaevskii teoria hedatua erabiltzen dugu, fluktuazio kuantikoak kontuan hartzen dituena. Lehendabizi sistemaren oinarrizko egoera bilatzen dugu, esperimentuan erabilitako bi tranpetarako. Ondoren, trantsizioan erabilitako arrapalaren abiaduraren efektuak aztertzen ditugu, zeinen bidez sakabanatze luzera aldatzen diogun gasari. Aldaketa hori dela eta sortzen diren talde-oszilazioak ere azaltzen ditugu, bai fase superjariakinean baita supersolidoan. Aurkitu dugu zeharkako konfinamendu sendoek trantsizio jarrai bat sortzen dutela ("Quasi-1D" deituriko izaera), konfinamendu ahulek etena sortzen dutelarik ("Quasi-2D" deituriko izaera). Azken horietan norabide azimutaleko eta zeharkako norabideko higidura moduak akoplatzen baitira.

HITZ GAKOAK: Mekanika kuantikoa, gas kuantikoak, Bose Einstein Kondentsatuak

ABSTRACT: We provide a theoretical characterization of the dynamical crossing of the superfluidsupersolid phase transition for a dipolar condensate confined in an elongated trap, as observed in the recent experiment by G. Biagioni et al. [Phys. Rev. X **12**, 021019 (2022)]. By means of the extended Gross-Pitaevskii theory, which includes the Lee-Huang-Yang quantum fluctuation correction, we first analyze the ground state configurations of the system as a function of the interparticle scattering length, for both trap configurations employed in the experiment. Then, we discuss the effects of the ramp velocity, by which the scattering length is tuned across the transition, on the collective excitations of the system in both the superfluid and supersolid phases. We find that, when the transverse confinement is sufficiently strong and the transition has a smooth (continuous) character, the system essentially displays a (quasi) 1D behavior, its excitation dynamics being dominated by the axial breathing modes. Instead, for shallower transverse trapping, when the transition becomes discontinuous, the collective excitations of the supersolid display a coupling with the transverse modes, signalling the onset of a dimensional crossover.

KEYWORDS: Quantum mechanics, quantum gases, Bose Einstein Condensates

*Harremanetan jartzeko/Corresponding author: Aitor Alaña, UPV/EHU, FCT-ZTF, Leioa, Bizkaia. https://orcid.org/0000-0002-4477-6607, aitor.alana@ehu.eus

Nola aipatu/How to cite: Alaña, Aitor «Kondentsatu dipolar luzanga baten superjariakin-supersolido trantsizioa zeharkatuz», Ekaia, DOI: https://doi.org/10.1387/ekaia.26765

Jasoa: uztailak 5, 2024; Onartua: urriak 24, 2024 ISSN 0214-9001-eISSN 2444-3225 / ©2024 UPV/EHU

SA Obra Creative Commons Atribución 4.0 Internacional-en lizentziapean dago

1 Sarrera

Supersolidoak materiaren fase exotiko bat dira, propietate superjariotsuak (faseen koherentzia eta frikziorik gabeko jarioa [1,2]) egitura kristalinoen ezaugarri den simetria itzulgarriaren hausturarekin konbinatuz [3–6], hau da, kristalak gisa, supersolidoa ez da homogeneoa, espazioan zehar aldaketak ditu (dentsitatea aldetzen zaio). Superjariakinak solidotzeko edozein posizioaren menpeko barne-aldaketa nahikoa izaten da, kanpotik inposatua ez den bitartean, hots, jariakin bat sinu itxurako kutxan sartzea ez da nahikoa solidotzat jo dezagun, bere forma aldaketa kanpotik inposatzen bazaio, solidoetan posizioaren araberako aldaketak sistemaren beraren ondorioz sortu behar dira. Orokorrean edozein propietate alda daitekeen arren, supersolido dipolarren kasuan dentsitatea da espazialki aldatzen dena, beraz, sistemak bere burua antolatzen du zonalde batzuk besteak baino dentsuago eginez, dentsitate maximoko puntuekin sare bat osatuz, kristaletan lez. Dentsitate minimoetan, ordea, dentsitatea ezin da zerora joan, izan ere kasu horretan sistemak fase simetria orokorra galduko luke, eta beraz ez litzateke gehiago superjariakin gisa portatuko. Supersolidoa, nahiko berriak diren egoera lez, nahiko ezezaguna egiten zaigu egun, izan ere ez dago batere argi zenbat propietate partekatzen dituen solido makroskopikoekind, haien definizioa betetzen duten arren.

Lehenik 50eko hamarkadan iragarrita [7,8], supersolidoek komunitate zientifikoaren interesa irabazi dute, azken aldian kondentsatu dipolarretan [9–17] eta beste sistema atomiko ultra-hotz batzuetan [18–20] gauzatu diren esperimentuen ondorioz. Sistema atomiko ultra-hotzek gizakiak inoiz neurturiko tenperatura baxuenak lortzen dituzte, nano-Kelvin inguruetara heduz. Horietan, hunts-kamara beten zentroan atomoak laser bidez konfinatzen dira. Izan ere, laserretan argiak sinu itxurako uhin forma du, beraz, laser ugari erabiliz posible da interferentzia gisa potentzial konfinatzen bat lortzea. Gainera, atomoak hoztu eta manipulatzeko haien elektroiek dituzten trantsizioak baliatzen dira, erresonantzian edo erresonantziatik at dauden laserrak zuzenduz atomoengana. Atomoen izaera dipolarra nabarmendu nahi denean, kanpotik eremu magnetiko bat aplikatzen zaio sistemari, honela dipolo denak norabide berean alinea daitezen. Horixe da kasua, hain zuzen, supersolido dipolarrak sortzerakoan.

Ref. [21] -k berriki eman du fase kuantiko superfluidoaren trantsizio esperimentalaren berri, kondentsatu dipolar luzanga batean, partikulen arteko elkarrekintzak afinatuz (Feshbachen erresonantzien bidez). Frogatu denez trantsizioaren izaera jarraitutik etendunera alda daiteke (fase trantsizioa mota batekoa edo bestekoa izan daiteke, lehena 1D eta bigarrena 2D motakoak deiturikoak, hau ezaugarri batzuen bidez ikus daitekeelarik, adibidez, energiaren deribatua trantsizioan zehar), horretarako nahikoa dugu zeharkako konfinamentua (edo zenbaki atomikoa) afinatze hutsaz. Afinazioaren bidez 1Dko bigarren mailako trantsizioen [22, 23] eta 2Dko lehen mailako trantsizioen [9, 12, 24–27] arteko zeharkatze dimentsionala egin daiteke.

Lan honetan kondentsatu dipolarraren oreka propietate eta propietate dinamikoen karakterizazio teorikoa erakusten dugu bi tranpa-konfigurazioetan, V_C eta V_D , Erref. [21] esperimentuan erabiliak. Gasaren partikulak uhin funtzio bakarraren bidez deskriba daitezke, partikula bakarra balira lez. Schódinger-antzerako ekuazio baten menpe dago uhin funtzio hau, baina gasaren partikulen arteko elkarrekintzaren ondorioz termino gehiago izan behar ditu ekuazioak gasa ondo anizatzeko. Analisi hau Gross-Pitaevskii teoria hedatuaren bidez egiten da [28], kontaktu (gasaren pertikulek elkar "jotzean" duten elkarrekintza dela eta) eta elkarrekintza dipolarrak [29] (gasa dipolarra da, partikula bakoitzak momentu dipolar bat du, eta beraz, pertikulen artean dipolo-dipolo elkarrekintza bat dago, zeinetan dipolo guztiak lerrokaturik daudele joko dugun) kontuan hartuz, baita Lee-Huang-Yang zuzenketa kuantikoa ere [30]. Azken zuzenketa hau fluktuazio kuantikoen ondorio da, horiek gasaren dentsitatearen aurka egiten dutelarik, elkarrekintza alderatzaile baten gisa jokatzen du; dentsitate baxuetan, ordea, arbuilagarria da.

Lehenik eta behin, sistema honen oreka-propietateak aztertzen ditugu, eta agerian uzten dugu zeharkako itxitura estuagoa (V_C) ezaugarri duen tranpak trantsizio leun/jarraitua duela fase superjariakin eta supersolidoen artean, eta itxidura ahulagoentzat (V_D) , berriz, izaera etenduna

Aitor Alaña

1. irudia. Energia normalizatua, $(E[a_s] - E[a_s^c])/h$ $(E[a_s^c]/h$ 432.2Hz den V_C -rentzat eta 476.7 Hz V_D -rentzat), supersolido eta superjariakin dentsitate konfigurazioentzat, a_s sakabanaketa luzeraren menpe, V_C (ezkerra) eta V_D (eskuina) tranpentzat. Dentsitate banaketa tipikoak (ikusi testua, irudi bakoitzean kolore eskala dentsitate distribuzioaren arabera aukeratua izan da) gezi bidez adierazten dira (zeinen koloreak energia eskalaren koloreekin bat datozen). Lerro ezjarrai bertikalak faseen arteko trantsizio puntua seinalatzen du, sakabanaketa luzera kritikoan a_s^c . Barneko grafikoek trantsizio inguruan zoom bat eskaintzen dute.

agertzen dela argi eta garbi. Ideia hauxe da: z norabidean konfinamendu gogorra ezartzen diogu sistemari eta beraz trantsiziorako dinamika garrantzitsuek ezin dute ardatz horretan zeharko dinamika 'ikusi". x norabidean konfinamendu ahul bat ezarriko dugu beti supersolidoa sortu dadin (norabide horretan zehar ikusiko dira dentsitate aldaketak, sinu antzerako formarekin), eta beraz ynorabidean zeharko konfinamenduaren arabera trantsizioan dimentsio bakarra (x) edo bi (x eta y)ikusi ahalko ditu. Dimentsio bakarraren kasuan (1D) trantsizioak jarraia izan behar du, biren (2D) kasuan ezjarraia.

Ondoren, sakonki eztabaidatuko dugu arrapalaren abiadurak, hots, sakabanaketa luzeraren aldaketaren abiadurak, nola eragiten dion sistemaren erantzun dinamikoari, supersolidoen formazio denboraren papera ere komentatuz. Sukaldean aritzearen antzekoa da, ez da berdina janariari su sendoan tenperatura bapatean aldatzea edo su ahulean pixkanaka aldatzea, kasu honetan tenperaturaren baliokidea skabanaketa luzera izanik. Nabarmenki ikusten dugu, sistema fase supersolidoan sartzen denean, bi tranpen modu kolektiboek portaera bereizgarriak dituztela: V_C tranpan, non sistema modu eraginkorrean quasi-1D kontsidera daitekeen, kitzikapen-dinamika arnasketa axialen bidez ematen dela (gasaren tamaina hazi eta txikitu egiten da periodikoki x ardatzaren norabidean, birikek arnasteko egiten duten antzera); aldiz, V_D tranpan, supersolidoen kitzikapen axialek zeharkako modu kolektiboekiko (gogoan izan, tranpa horrekin 2D kasua dugu esku artean) lotura argia erakusten dute. Honek, Ref. [21]-ko eztabaidarekin bat datorren dimentsionalitate aldaketa baten agerpenaren arrastoa eskaintzen du.

Artikulua honela dago antolatuta: 2 atalean, sistemaren parametroak eta Gross-Pitaevskii teoria hedatuaren esparru orokorra azaltzen ditugu kondentsatu dipolarrentzat. Ondoren, 3 atalean, kondentsatuaren oreka-propietateak aztertzen ditugu bi tranpa-konfigurazioetan, V_C eta V_D , eta trantsizio superjariakin-supersolidoa karakterizatzen dugu s-uhin sakabanatze luzeraren funtzio gisa. 4 atala, aldiz, trantsizioaren zeharkatze dinamikoari eskaini diogu. 4 atalean arrapalaren abiaduraren eragina eta, gero, 4 atalean, supersolidoaren formazio-denborak trantsizioan duen eragina eztabaidatzen dugu. Azkenik, 4 atalean sistemaren talde-oszilazioak aztertzen ditugu, trantsizioan zehar lortutako gehiegizko energiaren ondorioz sortzen dena, bai fase supersolidoetan, baita superjariakinean. Azken oharrak 5 atalean irakur daitezke.

2 Sistema

Erref. [21]-ren konfigurazio esperimentala hartzen dugu kontuan. Kondentsatu dipolarra $N = 3 \times 10^4 \ ^{162}$ Dy atomo magnetikoz osatua dago, a_s sakabanaketa luzera aldagarriarekin eta luzera dipolarra, dipolo-dipolo elkarrekintzaren indarrari lotua, $a_{dd} = 130a_0$ (a_0 Bohr erradioa) duelarik. Dy atomoak erabiltzen dira haien propietate magnetikoegatik, momentu magnetiko handiak baidituzte beste atomoekin konparatuz, eta isotopo bosonikoak dituenez Bose Einstein Kondentsazioa lor daiteke atomo horiekin. Gasa $\omega = 2\pi \times (\nu_x, \nu_y, \nu_z)$ maiztasunak dituen potentzial harmoniko batean harrapatuta dago. Esperimentuan bezala, bi tranpa konfigurazio ezberdin hartzen ditugu kontuan, $\omega_C = 2\pi \times (15, 101, 94)$ Hz, eta $\omega_D = 2\pi \times (20, 67, 102)$ Hz, non C/D etiketak trantsizioaren ezaugarri jarraituari/etenari egiten dioten erreferentzia (ikusi 3 atala), [21] Erref.-an erabilitako notazio berarekin. Beraz, potentzial harmonikoei V_C eta V_D deitzen diegu.

Sistema hau Gross-Pitaevskii (GP) teoria orokortu baten bidez deskriba daiteke, elkarrekintza dipolarrak [29] eta Lee-Huang-Yang zuzenketa kuantikoak (dentsitate lokal hurbilpenaren barnean) [30] [30]. Energiaren funtzionala $E = E_{GP} + E_{dd} + E_{LHY}$ gisa idatz daiteke (jaurtiketa parabolikoaren kasuan objektu baten energia energia zinetiko eta potentzialaren betura gisa idatzi daitekeen bezala),

$$E_{GP} = \int \left[\frac{\hbar^2}{2m} |\nabla \psi(\mathbf{r})|^2 + V_{C/D}(\mathbf{r})n(\mathbf{r}) + \frac{g}{2}n^2(\mathbf{r})\right] d\mathbf{r} ,$$

$$E_{dd} = \frac{C_{dd}}{2} \iint n(\mathbf{r})V_{dd}(\mathbf{r} - \mathbf{r}')n(\mathbf{r}')d\mathbf{r}d\mathbf{r}' ,$$

$$E_{LHY} = g_{LHY} \int n^{5/2}(\mathbf{r})d\mathbf{r} ,$$
(1)

non $E_{GP} = E_k + E_{ho} + E_{int}$ GP energia funtzional arrunta den, gai zinetiko, potentzial eta kontaktu gaia barne, $V(\mathbf{r}) = (m/2) \sum_{\alpha=x,y,z} \omega_{\alpha}^2 r_{\alpha}^2$ potentzial harmonikoa, $n(\mathbf{r}) = |\psi(\mathbf{r})|^2$ kondentsatu dentsitatea (N atomo kopurura normalizatua), $g = 4\pi\hbar^2 a_s/m$ kontaktu elkarrekintza sendotasuna, $V_{dd}(\mathbf{r}) = (1 - 3\cos^2\theta)/(4\pi r^3)$ dipolo-dipolo potentzial (hutsa), $C_{dd} \equiv \mu_0 \mu^2$ bere sendotasuna, $\mu \mu$ momentu dipolarraren modulua, \mathbf{r} dipoloen arteko distantzia eta $\theta \mathbf{r}$ eta dipoloen ardatzaren arteko angelua diren, $\cos \theta = \mu \cdot \mathbf{r}/(\mu r)$. [21] Erref.-an lez, dipoloak z ardatzarekiko lerrokatuak egongo dira \mathbf{B} eremu magnetiko bati esker. Azkenik, LHY zuzenketa 3D-tako gas homogeneoaren adierazpenetik lortzen dugu, dentsitate lokalaren hurbilketa erabiliz [30,31].

3 Oinarrizko egoera

Sistemaren oinarrizko egoera kalkulatzen dugu $E[\psi]$ energia funtzionala minimizatuz algoritmo konjugatu baten bidez (conjugate gradient metodoa), ikus, adibidez, [32, 33] erreferentziak. Bi potentzialetarako oinarrizko energiaren portaera 1 irudian agertzen da a_s s-uhin sakabanaketa luzeraren menpe, $a_s \in [90, 96]a_0$, dentsitate banaketaren irudi esanguratsuekin batera, fase supersolido (SS) eta superjariakinean (SF)¹. Ikusi supersolidoak bi egoera ia degeneratu dituela bi tranpetarako, oinarrian maximo edo minimo batekin². Bi egoera horiek (simetria dela eta) dira tranparen presentzian bizirauten duten bakarrak, sistema uniforme (infinitu) batean posible liratekeen infinitu egoeren artean. ³.

¹Konputazio kutxaren luzerak 54μ m $\times 18\mu$ m $\times 18\mu$ m dira. Simulazioetako puntu kopuru arruntak $192 \times 64 \times 64$ ingurukoak dira

²Numerikoki bi egoera horiek hasierako egoera ezberdinak baliatuz lor daitezke, erabili den gradiente konjugatuaren metodoa hasierako egoerarekiko sentikorra dela baliatuz.

³Harrapatze potentziak gabe saren zehar fase aldaketek ez dute energiarik behar, beraz kasu infinituan supersolidoaren fasea ez dago definiturik, harrapaturiko sisteman ordea, hori ez da egia, eta egoera posibleetatik bik baino ez dute energia minimizatzen, ikusten ditugun bi egoerek ain zuzen.

2. irudia. Onarrizko energiaren deribatua bi tranpentzat, V_C eta V_D . Azkenak ezjarraitasun nabari bat du (lerro bertikal ezjarraia) trantsizio puntuan (puntu gorriak).

Has gaitezen V_C (y norabidean zehar konfinamendu sendoagoa duena) potentziala kontsideratuz, 1 iruadiaren ezkerreko panelean erakusten dena. Tranpa honetan trantsizioa $a_s^c \simeq 94.4a_0$ sakabanaketa luzerarako gertatzen da, izaera jarrai batekin: supersolidoa eta superjariakina pixkanaka eraldatzen dira, haien energiak bezala [ikusi 1 iruadia]. Puntu kritikoa identifikatzeko energiaren lehen deribatua (a_s -rekiko) erabil daiteke (ikusi 2 irudia), maldaren aldaketa zorrotz bat identifikatuz. Trantsizio puntuan $\partial E/\partial a_s$ jarraia izateak trantsizioaren izaera jarraia baieztatzen du.

 V_D potentzialaren kasuan, y norabidean ahulagoa dena, trantsizioa a_s baxuagoan gertatzen da, ain zuzen $a_s^c \simeq 92.4a_0$. Kasu horretan bi SS egoerek portaera ezberdina dute trantsiziotik gertu, ikusi 1b irudiaren barne-irudia. Ain zuzen, Zentruan maximoa duen egoera da energia baxuena duena SFarekin duen mugan, beraz a_s^c -ren definizioa egoera horren eta SF-aren energien gurutzapenak definitzen du. Trantsizioak ezajarraitasun argia du a_s -rekiko energiaren lehen deribatuan, begiratu 2. [21] erreferentzian jorratzen den gisa, SF–SS trantsizioaren portaera ezajarrai horrek 2D egituradun supersolidoak ekartzen ditu burura [34–37]. Nolatan hau, lerro bakarreko maximoak baditugu gure supersolidoan? Huaxe da arrazoia: lerro bakarreko supersolidoetan ere inguruko dentsitateak (maximoek baino dentsitate baxuagoarekin) egitura triangular bat izan dezake. 1 irudian ikusgarria izan ez arren, egitura hori nabarmendu egiten da orekatik kanpo. Hau ragi ikus daiteke dinamikan zehar, 2D egitura triangularra ikusgarri egiten baita. Ondorengo ataleak jorratzen dugu gai hori sakonago.

4 Trantsizioaren ikerketa dinamikoa

Orain trantsizioaren ikerketa dinamikora joko dugu, [21] erreferentziako esperimentuan baliatutako protokoloaren antzerako protokolo bat baliatuz: Sistema egoera egonkor batean prestatzen da, supersolido edo superjariakina, a_s^i sakabanatze luzera jakin batean, ondoren a_s arrapala lineal baten bidez aldatzen da $da_s/dt \equiv v_a$ abiaduraz a_s^f amaierako balioraino, beste fasean. Arrapalaren eskema eta simulazioaren denbora tarteak 3 irudian ikus daitezke. Ulergarritasun kontzeptuala dela eta, hasierako eta amaierako sakabanaketa balioak a_s^c -tik distantzia berera daudela joko dugu, hau da, $a_s^{i/f} = a_s^c \pm \delta a_s$. Hemendik aurrera, $\delta a_s = 1.5a_0$ erabiliko dugu, hiru arrapala abiadurekin: i) "Quench"-a, $v_a = \infty$; ii) $v_a = 0.5 a_0/ms$, esperimentuan erabilitako abiadura [21] ([10] erreferentzian erabilitakoaren magnitude ordena berekoa); iii) $v_a = 0.05 a_0/ms$, esperimentuarena baina hamar aldiz txikiagoa, trantsizioaren zeharkapen quasiadiabatikoa posible egiten duena V_C tranparen kasurako, [21] erreferentzian dioten bezala.

Azken aukera horrek lehen aipatutako esperimentuaren antzeko egoera bat lortzea ahalbidetzen du, modelu teorikoan disipazio efekturik sartu beharrik gabe (esperimentuan, aldiz, badira

3. irudia. Zenbakizko simulazioetan erabilitako prozedura: Sistema oinarrizko egoeran sortzen da, supersolido edo superjariakin fasean, $a_s^i = a_s^c \pm \delta a_s$ balioarekin, eta ondoren sakabanaketa luzera arrapala linealean zehar aldatzen da $-t_R \equiv 2\delta a_s/v_a$ denboran – beste fasean dagoen amaierako baliorantz, $a_s^f = a_s^c \mp \delta a_s$. Orduan, sistema a_s^f balioan mantentzen da T denboran. SS/SF faseen arteko zeharkapenaren ondoren pasatako denbora τ -rekin adierazten da (ikusi 4 atala).

4. irudia. Sistemaren portaera SF–SS trantsiziorako arrapalan zehar, V_C tranparen kasuan. (goian) $(E[a_s] - E_{gs}[a_s^c])/h$ energia normalizatuaren portaera, $a_s(t)$ sakabanaketa luzeraren menpe arrapalan zehar, abiadura ezberdinetarako. Puntu beltzek oinarrizko energia adierazten dute. (a-c) Dentsitate banaketa beherantzako (SS-rantzako) arrapalaren amaieran, kasu hauetarako: (a) "quench"-a ($t_R = 0$ ms), (b) $v_a = 0.5 a_0/ms$ ($t_R = 6$ ms), eta (c) $v_a = 0.05 a_0/ms$ ($t_R = 60$ ms). (d-f) Dentsitate banaketa baliokideak gorantzako arrapalaren ostean (SF-rantz). (a) eta (d) panelak, "quench" baten ondoren, hasierako egoeren berdinak dira, definizioz (goiko irudietan ere erakusten direnak). Irudi bakoitzean kolore eskala ezberdin bat erabiltzen da, dentsitate banaketaren arabera.

efektu horiek [21])⁴.

Beraz, hemendik aurrera eztabaida disipazio gabeko egoerara mugatuko dugu, GP ekuazioa askatuz lortzen dena [2]

$$i\hbar\partial_t\psi = \delta E[\psi,\psi^*]/\delta\psi^*,\tag{2}$$

non $E[\psi, \psi^*]$ energia funtzionala (1) ekuaziokoa den ⁵. Aurreko ataletan jorratutako bi egoera supersoliden artean, ikusi dugunez, oinarrian maximoa duenak aukera gehiago du SF-SS trantsizioan espontaneoki sortzeko, beraz egoera hori erabili dugu hasierako egoera gisa SS-SF trantsiziorako, testua errazteko.

5. irudia. Sistemaren portaera SF–SS trantsizioan zeharreko arrapalan, V_D -ren kasuan. Erakusten diren balioak 4 irudiko berak dira, tranpa aldatuz.

Arrapalaren efektua

Azter dezagun orain nola aldatzen den sistema sakabanatze luzera aldatzen den bitartean. Zehazki, arrapala-abiadura ezberdinek sistemaren energiari nola eragiten dioten eta arrapala bakoitzaren amaieran kondentsatuaren dentsitate-banaketa zein den aztertuko dugu lehenik (arrapalaren amaieraren ondorengo dinamika 4 atalean jorratzen da). Hau 4 eta 5 irudietan ikus daiteke, V_C eta V_D tranpetarako, hurrenez hurren. Goiko panelean sistemaren energiaren portaera erakusten dugu $a_s(t)$ -ren arabera SF-SS trantsizioko hiru arrapaletan zehar (lerro urdinak) eta kontrako norabidean, SStik SFra (lerro gorriak). Quencharen kasuan, lerroa begiarentzako gida bat besterik ez da, sakabanaketaren hasierako eta amaierako balioa lotzen duena. SF eta SS faseetako hasierako konfigurazioak adierazten dituzte irudiaren barne irudiek. Arrapala bakoitzaren amaieran lortutako dentsitate banaketak, hau da $t = t_R$, (a-c) paneletan erakusten dira SF-SS trantsiziorako eta (d-f) paneletan SS-SF trantsiziorako.

Interesgarria da ohartzea, trantsizioa beheranzko norabidean gurutzatzean, SFtik SSra, bai energia-aldaketa bai azken dentsitate-banaketa arrapalaren abiadurak ahulki eragiten dituela. Quench baten kasuan, horrek horrela izan behar du sistema beste fase kuantikora proiektatzen delako, dentsitate banaketa aldatu gabe. Beraz, kasu honetan, azken konfigurazioak bat datoz hasierakoekin. $v_a = 0, 5a_0/\text{mm-ko}$ kasua ia quench baten baliokidea da (SS-SF trantsizioan gertatzen dena ez bezala, ikus beherago). Arrapala motelenaren kasuan ($v_a = 0, 05a_0/\text{mm-ko}$ kasua notelenaren kasuan ($v_a = 0, 05a_0/\text{mm-ko}$ katzen dena ez bezala, ikus beherago). Arrapala motelenaren kasuan ($v_a = 0, 05a_0/\text{mm-ko}$ baten baliokidea da (SS-SF trantsizioan gertatzen dena ez bezala, ikus beherago). Arrapala motelenaren kasuan ($v_a = 0, 05a_0/\text{mm-ko}$ baten baliokidea da (SS-SF trantsizioan gertatzen dena ez bezala, ikus beherago). Arrapala motelenaren kasuan ($v_a = 0, 05a_0/\text{mm-ko}$ baten baliokidea da (SS-SF trantsizioan gertatzen dena ez bezala, ikus beherago). Arrapala motelenaren kasuan ($v_a = 0, 05a_0/\text{mm-ko}$ baten baliokidea da (SS-SF trantsizioan gertatzen dena ez bezala, ikus beherago). Arrapala motelenaren kasuan ($v_a = 0, 05a_0/\text{mm-ko}$) bakarrik antzeman daiteke hasierako egoerararekiko aldaketa txiki bat, V_D tranpan. Jokabide honen jatorria supersolidoaren formazio denbora-rekin lotuta dago (ikus, adibidez, [10] erreferentzia), 4 atalean aztertuko duguna.

Kontrako norabidean, SStik SFrako trantsizioa gurutzatzean, portaera oso bestelakoa da: energia linealki hazten da sakabanaketa-luzera "quench'' bidez aldatuz gero, aldiz, oinarrizko egoeraren energia jarraitzen du ia adiabatikoki sakabanaketa-luzera pixkanaka aldatzen bada ($v_a = 0,05a_0/m$). Gainera, bai portaera energetikoagatik, baita 4 irudiaren azken konfigurazioagatik, argi dago V_C tranparako arrapala nahiko motela dela SS egoera oinarrizko egoerara SF-ra hurbiltzeko, hasierako egoera gogorarazten duen dentsitate deformazioan txertatutako kitzikapen energia txiki batekin. Nabarmenki, deformazio hori handiagoa da V_D tranpan (alderatu 4 eta 5 irudiak). Gainera, SF-aren aldean energia hondarra handiagoa da V_D tranpan V_C tranpan baino, hiru arrapalen kasuan (ikusi [21] erreferentziako eztabaida). Behaketa horiek bat datoz kasu bakoitzeko trantsizioaren izaera jarrai edo etenarekin.

⁴Disipazio efektu horiek similazioetan erraz implementa daitezkeen arren, ez ditugu kontuan hartzen argitasuna lortzeko eta trantsizioarekin lotutako dinamika hobeto identifikatzeko.

⁵GP ekuazioa "FFT split-step" metodoa baliatuz askatzen dugu, ikusi adibidez [38] erreferentzia.

6. irudia. Sistemaren portaera dinamikoa SS fasean, V_C tranparentzat. $\tau = 0$ denbora SF-SS gurutzeari dagokio. (goian) Dentsitate banaketa denbora esanguratsuetan (begiratu izenak) "quench"-arrapalan (ezkerra) eta $v_a = 0.05 a_0/\text{ms}$ -ko arrapalan (eskuina). Dentsitate guztiek kolore eskala bera dute. Erakusten ez den $v_a = 0.5 a_0/\text{ms}$ kasua "quench"-aren oso antzekoa da. Lehen lerroko panelak egitura supersolidoa argi eta garbi sortzen hasten den unekoak dira, $\tau \approx 30$ –40 ms. (behean) Luzera axialaren $w_{SS}(\tau)$ zabalera (adimentsionala) [ikusi (3) ekuazioa], kontsideratutako hiru abiadurentzat. Zirkulu huts/beta gorriak goiko paneletako dentsitate distribuziokin datoz bat. Magenta koloreko lerro-puntudun lerroa bi maiztasuneko sinu itxurako "fit" bati dagokio, $\nu_+ \simeq 24.0$ (Hz) eta $\nu_- \simeq 13.9$ (Hz) maiztasunekin, supersolidaren modu arrunten bikoiztea baieztatuz (ikusi testua). Barne irudiak y norabideko zabalera adierazten du, $w_{SS}(\tau)$ ($v_a = 0.05 a_0/\text{ms}$ kasuan).

Supersolidoaren formazio denbora

Orain supersolidoak sortzeko behar duen formazio denbora jorratuko dugu, SF-SS trantsizioaren ostean garrantzi handia duena. Komeni da $\tau \equiv t - t_R/2$ denbora koordenatu berria erabiltzea, trantsizio puntua zeharkatzetik aurrera pasatako denbora adierazten duena.

Ikusi dugunez, V_C tranparen kasuan $\tau_{SS}^C \approx 30 - 40$ ms ondoren hasten da sistema egitura supersolidoa sortzen, ikusi 6 irudiaren goiko panela. V_D tranpak aldiz formazio denbora laburragoak ditu, $\tau_{SS}^D \approx 25 - 30$ ms, ikusi 7 irudia. Kasualitatez formazio denbora hauek $t_R/2$ -ren ingurukoak dira $v_a = 0.05a_0$ /ms abiadurako arrapalarentzat. Horrek argitzen du zergatik agertzen den patroi supersolidoa arrapalaren amaieran tranpa horretarako, ikusi 5c. Kontuan izan esperimentuetan neurtutako formazio denborak [21] zenbakizko analisiarekin aurkiturikoak baino laburragoak direla, seguruaski tenperatura finituaern efektuen eta hiru gorputzen talka galeren ondorioz, ikusi [10, 39] erreferentziak.

Goiko irudiek adierazten dute τ_{SS} ez dela soilik tranpa konfigurazioaren menpekoa, baita arrapalaren abiaduraren menpekoa ere. [10]-an eztabaidatu gisa, formazio denbora luzeagoak hasierako egoera superjariotsuaren ($\tau = 0$ unekoa) eta helburu den egoera supersolidoaren arteko energia alde txikiagoekin lotuak daude. "Quench"-aren kasuan τ_{SS} ren menpekotasun bakarra amaierako energia aldearekiko baino ez da, $\Delta E \equiv E_{SF}[a_s^f] - E_{SS}[a_s^f]$, ez duelako tarteko $a_s^f < a_s < a_s^i$ sakabanaketa luzen balioekiko menpekotasunik. Arrapala linealaren kasuan, ordea, sistemak denbora tarte bat pasatzen du a_s^c -tik a_s^f ra, eta beraz, bi egoeren arteko aldea txikiagoa den "lurralde" bat zeharkatu behar du, ikusi 4 irudia. Argudio horrek kualitatiboki azaltzen du behatutako atzerapen txikia. Tranpen arteko aldea dela eta, 4 eta 5 irudiak konparatuz argi dago V_D -ren kasuan energia alde handiagoa dagoela, formazio denbora txikiagoekin lotua, goiko arrazonamendua onartuz.

Talde-oszilazioak

Sistema fase berrian sartu ondoren, SS edo SF, arrapalan hartutako kitzikapen energiak, azkenean, sisteman oszilazio kolektiboak sortzen ditu. Kasu honetan, fase-trantsizioak tranparen ardatz-norabidean zeha eragiten dionez batez erer dentsitatearen banaketari, ekarpen handiena ar-

7. irudia. Sistemaren portaera dinamikoa SS fasean, V_D tranparentzat. Balioak 6 irudiko berak dira. Ohartu agertzen den 2D egituraz (bigarren eta hirugarren panel lerroak),beheko irudiaren berne irudian agertzen diren zeharkako oszilazioekin lotua (ikusi testuan). Nabarigarria da baita egitura supersolidoa 6 irudian baino pixkat lehenago hasten dela sortzen, $\tau \approx 25-30$ ms denean (ikusi goiko panelak).

8. irudia. $w_{SF}(\tau)$ luzera normalizatuaren (adimentsionala) eboluzioa (3) ekuazioaren bidez definitua, V_C (ezkerra) eta V_D -rentzat (eskuina). $v_a = 0.05a_0$ /ms abiaduraren gainean ikusi daitekeen lerro beltz puntulerroduna $A\sin(2\pi\nu t + \theta) + B$ itxurako "fit" bat da, $\nu_D \simeq 29.3$ (Hz) eta $\nu_C \simeq 22.7$ (Hz) maiztasunekin, zeinak arnasketa modu axialekin bat datozen (ikusi testua).

nasketa axialetik dator [12]. Azken hori ondo ulertzeko erabil daitekeen ezaugarri egokia x norabideko zabalera da, supersolidoaren ardatz-norabideari dagokiona. Horretarako, honela definitzen dugu zabalera erlatibo normalizatua:

$$w_{\alpha}(t) \equiv \left[\sigma_x(t) - \sigma_{x\alpha}^{eq}\right] / \sigma_{x\alpha}^{eq},\tag{3}$$

non $\sigma_x^2(t) \equiv \langle x^2 \rangle = (1/N) \int x^2 n(\mathbf{r}, t) d\mathbf{r}$, α -k fase SS eta SFak adierazten ditu, eta $\sigma_{x\alpha}^{eq}$ -k $a_s^c \pm \delta a_s$ balioetako zabalerak. Hemendik aurrera luzerek τ -ren menpe duten portaera eztabaidatuko dugu, hots, $w_\alpha(\tau)$. Balio hori 6 eta 7 irudien azpiko panelean erakusten da SS-aren kasurako, eta 8 irudian SF-aren kasurako. Oro har, $w_\alpha(\tau)$ -ren portaerak arrapalen (ez) adiabatikotasunaren eta trantsizioaren izaeraren karakterizazio bat eskaintzen digu, bi tranpa egiturentzat.

Iker dezagun SS kasua lehenik, 6 eta 7 irudietakoa. Lehenik eta behin, ikus dezakegu $v_a = 0.5$ a_0 /ms-ko arrapala, esperimentuan erabilia [21], ia bereizezina dela "quench"-aren kasuarekiko. Arrapala motelena aldiz, $v_a = 0.05 a_0$ /ms-koa, ezaugarri berezi bat du, izan ere zabalera leunki murrizten baita arrapalan zehar, $-30 \text{ ms} < \tau < 30 \text{ ms}$. Horrek a_s^i -tik a_s^f -ra sistemaren pixkanaka egokitzeko ahalmena adierazten du.

[12] Erreferentzian eztabaidatu gisa, supersolido luzanga baten kitzikapen dinamikak arnasketa modu axialen *bikoizte* bat du. SS-an agertzen diren bi moduak supersolidoaren sare egituraren deformazioei daude lotuak, amplitude (maiztasun altukoa) eta distantziei (maiztasun baxukoa) ain zuzen. V_C tranparen kasuan, bi maiztasun hauek behatzen ditugu, ikusi 6 irudia, $A_+ \sin(2\pi\nu_+ t + \theta_+) + A_- \sin(2\pi\nu_- t + \theta_-) + B$ funtzioarekin "fit"-eatzen duguna (ikusi irudiko lerro magenta lerropuntuduna). $v_a = 0.05 a_0$ /ms-rentzat maiztasunen balioak (ν_+/ν_x)_C $\simeq 1.6$ eta (ν_-/ν_x)_C $\simeq 0.93$

dira, [12] erreferentzian deskribatutakoarekin bat etorriz (gure kasuan $\epsilon_{dd}^C = 1.39$)⁶. Antzerako emaitzak lor daitezte funtzioa beste abiadurekin konparatuz. Zeharkako norabidean (y) ez dugu oszilazio garrantsitzurik ikusten, barne irudian erakusten den gisa. Irudian denbora batzuetako dentsitate banaketak erakusten ditugu: egitura supersolidoa argi eta garbi sortzen hasten denean (goiko lerroko panelak, lehenago ezatabaidatuak), $w_{SS}(\tau) = 0$ unekoak (bigarren lerroko panelak), eta $w_{SS}(\tau)$ -k lehen minimoa duen unekoa (hirugarren lerroko panelak). Irudi horiek ondo azaltzen dute kualitatiboki dinamika osoan zeharreko portaera (baita $w_{SS}(\tau)$ maximo batera iristen denean ere), egitura supersolidoaren deformazioen bidez (norabide axialean, amplitudeen eta tarteen aldaketak) ulertu daitekeena, lehen azaldu gisa.

 V_D kasuak, aldiz, portaera ezberdin bat du, inguruko dentsitatearen egiturarekin lotua. Hura 7 irudiko goiko paneletan (bigarren eta hirugarren lerroak) ikus daiteke. Nabarmenki, egitura horrek 2D supersolitoetan espero den egitura triangeluarra [34–37] gogorarazten du. Behatu dugunez, horri loturiko y norabidean zeharreko kitzikapenek (barne-irudietan erakutsiak) maiztasun altuak dituzte konparazioz, $\nu_{\perp} \simeq 60$ Hz. Kitzikapen horiek arnasketa modu axialekin akoplatzen dira, eta horrek azaltzen ditu 7 irudian ikusten diren oszilazio bizkorrak, $v_a = 0.05 a_0/ms$ kasuan. Kasu horretarako ezinezkoa da "fit" bat lortzea 2 edo 3 maiztasundun funtzio sinusoidalak erabiliz.

Azkenik, beha ditzagun arrapalek sortutako kitzikapenak SS-SF trantsizioan. Kasu horretan oszilazioak maiztasun bakarraren bidez uler daitezke, sinu erako eraldaketak dituelarik. Kitzikapen hori lehenago jorraturiko kondentsatu dipolarraren arnasketa modu axiala da, ikusi 8 irudia. Esandakoa egia da bi tranpentzako, maiztasuna batazbesteko eremu hutsaren (elkarrekintza dipolarrir gabe) emaitza baino pixka bat txikiagoa izatea espero da, $\omega = \sqrt{5/2}\omega_x$ [40], ikusi citeTa19b erreferentzia. Zehazki $(\nu/\nu_x)_C \simeq 1.51$ ($\epsilon_{dd}^C = 1.35$) eta $(\nu/\nu_x)_D \simeq 1.47$ ($\epsilon_{dd}^D = 1.37$) direla aurkitu dugu.

5 Ondorioak

Eztabaida teoriko bat aurkeztu dugu, Gross-Pitaevskii teoria hedatuaren esparruan, Lee-Huang-Yang zuzenketa kuantikoak barne, kondentsatu dipolar luzanga baten trantsizio superjariakinsupersolidoari buruz, [G. Biagioniet al. X12, 021019 (2022)]. Kontuan hartu ditugu esperimentuan erabilitako potentzial harrapari biak, sistemaren oreka eta propietate dinamikoen karakterizazioa partikulen arteko sakabanaketa luzeraren funtziotzat hartuz, trantsizioa bultzatzeko hori baita esperimentalki aldakorra den parametroa. Nahiz eta bi tranpetako supersolidoek lerro bakar bat erakusten duten ($a_s < a_s^c$ -rentzat), dagoeneko oinarrizko egoeran bi tranpek portaera bereizgarria dute. Konfinamendu nahiko sendoa bada zeharkako norabidean (y), V_C tranparen kasuan, SF-SSen trantsizioa jarraitua da, quasi-1D sistemetarako espero den bezala, superjariakina eta egoera supersolidoak bata bestearen artean etengabe eraldatzen direlarik. Aldiz, V_D potentzialaren kasuan, zeharreko konfinamendu ahulago batek ezaugarritzen duena, trantsizioak argi eta garbi erakusten du energiaren sakabanaketa luzerarekiko lehen deribatuan jauzi etena dagoela, quasi-2D sare egiturak dituzten supersolido harrapatuentzat espero den gisa [34–37]. Propietate horiek sistemaren talde-oszilazioetan islatzen dira, sakabanaketa luzera dinamikoki aldatzen denean, fase batetik bestera. Zehazki, sistema quasi adiabatikoki superjariakinaren fasera eramaten denean, sistemak arnasketa axialaren oszilazio garbiak egiten ditu bi tranpetan. Kontrako norabidean, egoera oso bestelakoa da: V_C tranpan kitzikapen-dinamikak arnasketa axialaren moduen bikoiztea du ondorio, trantsizioa eteten denean aldiz, V_D tranpan, supersolidoaren kitzikapen kolektiboak zeharkako moduekin akoplatzen dira, dimentsio-gurutzaketa bat seinalatuz. Aurkikuntza horiek [21] esperimentuaren emaitzak ulertzeko laguntza eskaintzen digute.

⁶ [12] erreferentziarekin konparaketa numerikoa ez da posible, maiztasunen balioak sistemaren parametroen menpekoak dira eta, eta horiek kasu honetan ezberdinak dira.

Bibliografia

- [1] Eugene P Gross. Hydrodynamics of a superfluid condensate. J. Math. Phys., 4(2):195–207, 1963.
- [2] Lev Pitaevskii and Sandro Stringari. *Bose-Einstein condensation and superfluidity*, volume 164. Oxford University Press, 2016.
- [3] Eugene P. Gross. Unified theory of interacting bosons. Phys. Rev., 106:161–162, Apr 1957.
- [4] DA Kirzhnitis and Yu A Nepomnyashchii. Coherent crystallization of quantum liquid. *Sov. Phys. JETP*, 32(6), 1971.
- [5] Massimo Boninsegni and Nikolay V Prokofev. Colloquium: Supersolids: What and where are they? *Rev. Mod. Phys.*, 84(2):759, 2012.
- [6] Vyacheslav I. Yukalov. Saga of superfluid solids. *Physics*, 2(1):49-66, 2020.
- [7] A. J. Leggett. Can a solid be "superfluid"? Phys. Rev. Lett., 25:1543–1546, Nov 1970.
- [8] GV Chester. Speculations on Bose-Einstein condensation and quantum crystals. *Phys. Rev. A*, 2(1):256, 1970.
- [9] L. Tanzi, E. Lucioni, F. Famà, J. Catani, A. Fioretti, C. Gabbanini, R.Ñ. Bisset, L. Santos, and G. Modugno. Observation of a dipolar quantum gas with metastable supersolid properties. *Phys. Rev. Lett.*, 122:130405, Apr 2019.
- [10] Fabian Böttcher, Jan-Niklas Schmidt, Matthias Wenzel, Jens Hertkorn, Mingyang Guo, Tim Langen, and Tilman Pfau. Transient Supersolid Properties in an Array of Dipolar Quantum Droplets. *Physical Review X*, 9(1):011051, 2019.
- [11] L. Chomaz, D. Petter, P. Ilzhöfer, G.Ñatale, A. Trautmann, C. Politi, G. Durastante, R. M. W. van Bijnen, A. Patscheider, M. Sohmen, M. J. Mark, and F. Ferlaino. Long-lived and transient supersolid behaviors in dipolar quantum gases. *Phys. Rev. X*, 9:021012, Apr 2019.
- [12] L. Tanzi, S. M. Roccuzzo, E. Lucioni, F. Famà, A. Fioretti, C. Gabbanini, G. Modugno, A. Recati, and S. Stringari. Supersolid symmetry breaking from compressional oscillations in a dipolar quantum gas. *Nature*, 574(7778):382–385, 2019.
- [13] Mingyang Guo, Fabian Böttcher, Jens Hertkorn, Jan-Niklas Schmidt, Matthias Wenzel, Hans Peter Büchler, Tim Langen, and Tilman Pfau. The low-energy Goldstone mode in a trapped dipolar supersolid. *Nature*, 574(7778):386–389, 2019.
- [14] G.Natale, R. M. W. van Bijnen, A. Patscheider, D. Petter, M. J. Mark, L. Chomaz, and F. Ferlaino. Excitation spectrum of a trapped dipolar supersolid and its experimental evidence. *Phys. Rev. Lett.*, 123:050402, 2019.
- [15] L. Tanzi, J. G. Maloberti, G. Biagioni, A. Fioretti, C. Gabbanini, and G. Modugno. Evidence of superfluidity in a dipolar supersolid from nonclassical rotational inertia. *Science*, 371(6534):1162–1165, 2021.
- [16] Matthew A. Norcia, Claudia Politi, Lauritz Klaus, Elena Poli, Maximilian Sohmen, Manfred J. Mark, RussellÑ. Bisset, Luis Santos, and Francesca Ferlaino. Two-dimensional supersolidity in a dipolar quantum gas. *Nature*, 596(7872):357–361, Aug 2021.

- [17] Maximilian Sohmen, Claudia Politi, Lauritz Klaus, Lauriane Chomaz, Manfred J Mark, Matthew A Norcia, and Francesca Ferlaino. Birth, life, and death of a dipolar supersolid. *Phys. Rev. Lett.*, 126(23):233401, 2021.
- [18] Julian Léonard, Andrea Morales, Philip Zupancic, Tilman Esslinger, and Tobias Donner. Supersolid formation in a quantum gas breaking a continuous translational symmetry. *Nature*, 543(7643):87–90, 2017.
- [19] Jun-Ru Li, Jeongwon Lee, Wujie Huang, Sean Burchesky, Boris Shteynas, Furkan Çağrı Top, Alan O. Jamison, and Wolfgang Ketterle. A stripe phase with supersolid properties in spin–orbit-coupled Bose–Einstein condensates. *Nature*, 543(7643):91–94, Mar 2017.
- [20] S C Schuster, P Wolf, S Ostermann, S Slama, and C Zimmermann. Supersolid properties of a Bose-Einstein condensate in a ring resonator. *Phys. Rev. Lett.*, 124(14):143602, 2020.
- [21] Giulio Biagioni, Nicolò Antolini, Aitor Alaña, Michele Modugno, Andrea Fioretti, Carlo Gabbanini, Luca Tanzi, and Giovanni Modugno. Dimensional crossover in the superfluidsupersolid quantum phase transition. *Phys. Rev. X*, 12:021019, Apr 2022.
- [22] Néstor Sepúlveda, Christophe Josserand, and Sergio Rica. Nonclassical rotational inertia fraction in a one-dimensional model of a supersolid. *Phys. Rev. B*, 77:054513, Feb 2008.
- [23] D. Petter, A. Patscheider, G.Natale, M. J. Mark, M. A. Baranov, R. van Bijnen, S. M. Roccuzzo, A. Recati, B. Blakie, D. Baillie, L. Chomaz, and F. Ferlaino. Bragg scattering of an ultracold dipolar gas across the phase transition from Bose-Einstein condensate to supersolid in the free-particle regime. *Phys. Rev. A*, 104:L011302, Jul 2021.
- [24] Yves Pomeau and Sergio Rica. Dynamics of a model of supersolid. *Phys. Rev. Lett.*, 72:2426–2429, Apr 1994.
- [25] T. Macrì, F. Maucher, F. Cinti, and T. Pohl. Elementary excitations of ultracold soft-core bosons across the superfluid-supersolid phase transition. *Phys. Rev. A*, 87:061602(R), Jun 2013.
- [26] Zhen-Kai Lu, Yun Li, D. S. Petrov, and G. V. Shlyapnikov. Stable dilute supersolid of twodimensional dipolar bosons. *Phys. Rev. Lett.*, 115:075303, Aug 2015.
- [27] Fabian Böttcher, Jan-Niklas Schmidt, Matthias Wenzel, Jens Hertkorn, Mingyang Guo, Tim Langen, and Tilman Pfau. Transient supersolid properties in an array of dipolar quantum droplets. *Phys. Rev. X*, 9:011051, Mar 2019.
- [28] Franco Dalfovo, Stefano Giorgini, Lev P. Pitaevskii, and Sandro Stringari. Theory of Bose-Einstein condensation in trapped gases. *Rev. Mod. Phys.*, 71:463–512, Apr 1999.
- [29] S. Ronen, D. C. E. Bortolotti, and J. L. Bohn. Bogoliubov modes of a dipolar condensate in a cylindrical trap. *Phys. Rev. A*, 74:013623, Jul 2006.
- [30] F Wächtler and L Santos. Ground-state properties and elementary excitations of quantum droplets in dipolar Bose-Einstein condensates. *Phys. Rev. A*, 94(4):043618 – 7, 2016.
- [31] M. Schmitt, M. Wenzel, F. Böttcher, I. Ferrier-Barbut, and T. Pfau. Self-bound droplets of a dilute magnetic quantum liquid. *Nature (London)*, 539:259–262, 2016.
- [32] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, USA, 3 edition, 2007.

- [33] Modugno, M., Pricoupenko, L., and Castin, Y. Bose-Einstein condensates with a bent vortex in rotating traps. *Eur. Phys. J. D*, 22(2):235–257, 2003.
- [34] Yong-Chang Zhang, Fabian Maucher, and Thomas Pohl. Supersolidity around a critical point in dipolar Bose-Einstein condensates. *Phys. Rev. Lett.*, 123:015301, Jul 2019.
- [35] Yong-Chang Zhang, Thomas Pohl, and Fabian Maucher. Phases of supersolids in confined dipolar Bose-Einstein condensates. *Phys. Rev. A*, 104:013310, Jul 2021.
- [36] J. Hertkorn, J.-N. Schmidt, M. Guo, F. Böttcher, K. S. H. Ng, S. D. Graham, P. Uerlings, H. P. Büchler, T. Langen, M. Zwierlein, and T. Pfau. Supersolidity in two-dimensional trapped dipolar droplet arrays. *Phys. Rev. Lett.*, 127:155301, Oct 2021.
- [37] T. Bland, E. Poli, C. Politi, L. Klaus, M. A. Norcia, F. Ferlaino, L. Santos, and R.Ñ. Bisset. Two-dimensional supersolid formation in dipolar condensates. *Phys. Rev. Lett.*, 128:195302, May 2022.
- [38] B Jackson, J F McCann, and C S Adams. Output coupling and flow of a dilute Bose-Einstein condensate. J. Phys. B: At. Mol. Opt. Phys., 31(20):4489–4499, 1998.
- [39] A. Gallemí, S. M. Roccuzzo, S. Stringari, and A. Recati. Quantized vortices in dipolar supersolid Bose-Einstein-condensed gases. *Phys. Rev. A*, 102:023322, Aug 2020.
- [40] S. Stringari. Collective excitations of a trapped Bose-condensed gas. *Phys. Rev. Lett.*, 77:2360–2363, Sep 1996.