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LABURPENA: Deribatu partzialetako ekuazioen artean, badago bat elektroien mugimendua aztertzen
duena ikuspuntu erlatibista batetik. Ekuazio hori Diracen ekuazioa bazala ezagutzen da. Ekuazio hau 1928.
urtean Paul Dirac fisikariak asmatu zuen eta historian zehar ekuazio garrantzitsua izan da mekanika kuan-
tioko erlatibistaren sorrera ekarri zuelako. Hala ere, gaur egun pil pilean dagoen ekuazio bat da. Besteak
beste grafenoaren azterketan erabiltzen da. Oinarrizko ikerketaren ikuspuntutik eta baita ikuspuntu teknolo-
giko batetik ezinbesteko material bihurtu da grafenoa bere propietate elektronikoak direla eta. Horrez gain,
quarken konfinamentua hadroien barruan deskribatzeko ere balio du. Lan honetan Diracen ekuazioaren
definizoa, nondik datorren eta bere propietate batzuk aztertuko ditugu.
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ABSTRACT: The Dirac equation is a partial differential equation that describes the movement of an
electron from a relativistic perspective. Created by the physicist Paul Dirac in 1928, this equation has his-
torically been significant as it introduced relativistic quantum mechanics. However, it is still relevant today.
For example, it is used to analyse graphene, a material that has become important thanks to its electronic
properties, both from a theoretical and a technological perspective. Furthermore, the Dirac equation can
describe the confinement of quarks in hadrons. In this work, we will define the Dirac equation, analyse its
creation, and study some of its main properties.
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1. Sarrera

Diracen ekuazioa azken hamarkadetan bereziki ezagun bihurtu den ekuzio bat da. Ez soilik
zientzialarien artean baizik eta kultura herrikoiean ere. Zientzialari batzuek munduko ekuaziorik
politena bezala bateiatu dute. Eta beste batzuek maitasunaren ekuazioa dela aldarrikatzen dute.
Pertsona askok beraien maitasuna adierazteko ekuazio hau tatuatzera heldu arte. Ez dira gutxi
sarean aurkitu daitezkeen Diracen tatuajeen irudiak. Baina, ba al dakite guztiek zer tatuatu duten?

Asko entzun eta idatzi da azken urteotan nola Diracen ekuazioa maitasun apurtezinaren sinbo-
loa den, irakurri adibidez [3]. Eta askotan ekuazioa honako azalpenarekin lotuta joaten da: Noiz-
bait eta denbora batez elkar-eragina izan duten bi sistema denboran edo distantzian banantzen
badira, banandutako bi sistema bezala deskribatu ahal izango dira. Hala ere modu sotil baten sis-
tema bakarrean bihurtu dira. Batak bestean eragiten jarraitzen du nahiz eta distantzia eta denbora
luze batek banatu. Hau da, noizbait loturik egon diren bi partikula nolabait erlazionatuta egoten
jarraitzen dute naiz eta unibertsoko kontrako puntuetan aurkitu. Hori da korapilatze kuantikoa edo
konexio kuantikoaren interpretazioetako bat.

Errez uler daiteke nola erlazionatu duen kultura herrikoiak konexio kuantikoaren ideia maita-
sunarekin. Baina hori ez da Diracen ekuazioak adierazten duena. Lan honetan ekuazioaren defini-
zioa, esanahia eta berezitasunak aztertuko ditugu ikuspuntu matematiko batetik.

Diracen ekuazioa ekuazio dotore bat izateaz gain bi zientzia adierazpen bakarrean batzen ditu:
mekanika kuantikoa eta erlatibitatea. Ekuazioaren autoreak, Paul Diracek, bi gai hauek bateratu
zituen 1928. urtean argitaratutako lan batzuetan, momentu hartara arte pentsaezina zen zerbait
izanik.

Alde batetik, mekanika kuantikoa dugu. Teoria honek proposatzen duena da aztertzen ari garen
sistema baten informazio guztia uhin-funtzioa, ¢)(x, t), izeneko objektu baten enkriptatuta dagoe-
la. Uhin-funtzio honek sistema bat nolabait aurkitzeko probabilitatea du bere barne. Uhin-funtzio
honek denboran eboluzionatzen du Schrédinger-en ekuazioa jarraituz. Sinplifikatzeko, bat dimen-
tsioko Schrédingerren ekuazioa idatziko dugu:

L0 h? 92
Zha’(/}(flf,t) = —%@w(%t) + Vw(x7t)7

non z aldagai espaziala den, ¢ denbora aldagaia, /m masa, ¢ unitate konplexua, A Planck-en kons-
tantea eta V' energia potentziala izanik.

Bestetik, Einstein-en erlatibitate berezia dugu. Honek argiaren abiadurara mugitzen diren sis-
temen funtzionamendua azaltzen du. Teoria honetako ekuaziorik garrantzitsu eta ezagunena hona-
ko hau izanik:

E = mCQ,
non E sistemaren energia, /m masa eta c argiaren abiadura diren. Ekuazioa honek masa eta ener-
giaren arteko erlazioa azaltzen du hutsean zehar.

Diracek Schrodingerren ekuazioa eta energia eta masaren arteko ekuazioa adierazpen baka-
rrean fusionatu zituen, mekanika kuantiko erlatibista bezala ezagutzen dena sortuz. Mekanika
kuantiko erlatibistak oso arin (argiaren abiaduratik hurbil dauden abiaduretan) mugitzen diren par-
tikulak deskribatzen ditu. Ekuazio horren bitartez Paul Diracek espin -1/2 bat duten eta argiaren
abiaduratik hurbil mugitzen diren partikulen dinamika ezinhobe deskribatu zituen. Hala nola, elek-
troi baten dinamika. Geroago, protoi eta neutroien dinamika ere deskribatu zituen. Beraz, Diracen
ekuazioak ez du konexio kuantikoa deskribatzen. Hasieran aipatu bezala, konexio kuantikoa edo
korapilatze kuantikoa bi partikula subatomiko edo gehiago modu intrinsekoan lotuta dauden feno-
menoa da haien arteko distantzia edozein izanda ere. Hau da, partikula baten egoerak besteengan
eragiten du beraien arteko distatzia handia izan arren. Konexio kuantikoa mekanika kuantikoko
fenomeno orokor bat da eta Diracen ekuazioak partikulen dinamika deskribatzen du, beraz, kon-
tzeptu desberdinak dira. Are gehiago, Diracen ekuazioak partikula askeen dinamika deskribatzeko
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ere balio du. Hau da, beste partikula batekin inoiz elkareraginik izan ez duen partikula batena.
Eta konexio kuantikoa existitzeko, gutxienez, bi partikula egon behar dira. Edozein kasutan, oso
ekuazio ederra da, adierazpen erraz eta xume batek esanahi handia duelako eta partikulen fisikan
eragin itzela izan duelako historian zehar.

Nahiz eta Diracen ekuazioa fisikatik datorren objektu bat den, artikulu honetan ikuspuntu ma-
tematiko batetik soilik jorratuko da.

2. Oinarrizko definizioak eta notazioa

Deribatu Partzialetako Ekuazio bat aldagai bat baino gehiago dituen funtzio ezezagun bat eta
bere deribatuak erlazionatzen dituen ekuazio bat da. Funtzioak aldagai bat baino gehiago duenez
funtzio horren deribatuak deribatu partzialak izango dira, hau da, aldagai konkretu batekiko deri-
batuak. Sarritan aldagai aske horiek denbora eta espazioa izango dira. Mota honetako ekuazioen
aplikazioa benetan zabala da. Zientzia eta Teknologiako fenomenoak aztertzeko erabiltzen dira
normalean. Ingeniaritza, fisika, kimika, ekonomia zein biologia arloetan, besteak beste. Gehien
bat eboluzio ereduak aztertzen dira, zeinetan denboran zehar kantitate edo aldagai zehatz baten
dinamika deskribatzen den. Aldagai horrek satelite espazial baten kokapena, partikula baten po-
sizioa, zein populazioaren hazkundea bezalako fenomeno desberdinak adieraz ditzake. Hala ere,
askotan egoera egonkorrak edo orekan dauden egoerak deskribatzeko ere erabiltzen dira.

Definizioa 1. Deribatu partzialetako ekuazio bat u(x) funtzioa ezezagun bezala duen eta
F(z,u, Du, D*u,...,D™u) = 0

erlazioa betetzen duen ekuazio bat da, F ezaguna eta x = (x1,...,x,) € R" izanik. D™u-k
m € N ordeneko u-ren deribatu partzial guztiak adierazten ditu.

Definizioa 2. Deribatu partzialetako ekuazio edo sistema baten ordena bertan agertzen diren u-
ren deribatuen ordenik handiena da.

Adibidea 1. Honako ekuazio hau,
Ut — Ugy = 07

bigarren ordenako deribatu partzialetako ekuazio bat da, funtzio ezezaguna u(t,z), x € Retat >
0 izanik. Ekuazio hau dimentsio bateko beroaren ekuazioa bezala ezagutzen da. Eta t aldiunean,
x posizioan dagoen tenperatura adierazten du.

Ikuspuntu klasiko batekin begiratuz gero, deribatu partzialetako ekuazioak ekuazio hiperboli-
ko, paraboliko eta eliptikoetan sailkatzen dira. Sailkapen horretako ekuazio nagusiak Uhinen ekua-
zioa, Beroaren ekuazioa eta Laplaceren ekuazioa dira, hurrenez hurren. Baina badaude beste asko
ez direnak sailkapen horretan sartzen, Schrodinger, Dirac, Klein-Gordon edo Korteweg-de Vries-
en ekuazioak, besteak beste. Hauek ekuazio dispertsibo bezala ikus daitezke, hau da, frekuentzia
desberdinak abiadura talde desberdinetan hedatzen dira. Beste modu batera esanda soluzioak sa-
kabanatzera jotzen du denboran zehar.

Lan honetan deribatu partzialetako ekuazio konkretu baten zentratuko gara, Diracen ekua-
zioan, hain zuzen. Ekuazio hau lehen ordenako deribatu partzialetako ekuazio matrizial bat da. R3
espazioan ari garenean Diracen ekuazioak — %—eko espina duten partikulen eboluzioa deskriba de-
zake ikuspuntu erlatibista batetik, adibidez, elektroi edo positroiak bezalako partikulak. Partikula
hori beste partikula batzuen edo beste indar batzuen menpe egon daitekeelarik. Bestalde, R3-ko
) eremu bornatu batean ari garenean, Diracen ekuazioak quarken konfinamendua hadroietan des-
kriba dezake. Eta bi dimentsioetan lan egiten dugunean, grafenoaren azterketarako ere balio du.
Hau da, aukeratzen dugun espazio, eremu edo baldintzen arabera, Diracen ekuazioak aipatutako
kasu bat edo beste deskribatuko du. Grafenoaren adibidea, bi dimentsioko ekuazioari dagokiona,
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gaur egun pil pilean dagoen gai bat da material horren propietate bereziak direla eta. Grafenoaren
estruktura bi dimentsioko ezti-orraze itxurakoa da. Gai hau ere interesgarria izan arren, gu hiru di-
mentsiotako ekuazioan zentratuko gara, hau da, elektroien eboluzioa deskribatzen duen ereduan.
Eta honako hau da hiru dimentsiotako Diracen ekuazio askea, hau da, kanpoko indarren eraginik
gabekoa:

z'hgtw(t, z) = (—ihea - V + Bmc)y(t, z),

non V R3-ko gradiente bektorea den, o = (a1, a2, a3), ag, k = 1,2,3, eta 3 balio konplexuak
dituzten 4 x 4-ko matrizeak, ¢ unitate konplexua eta A, ¢, m konstante fisikoak diren.

Aurrera jarraitu orduko, artikulu honetarako beharrezkoak izango diren kontzeptu batzuen de-
finizioa emango dugu:

Definizioa 3. Izan bitez f(x) funtzioa x = (x1,x2,...,2,) € R" izaniketa F = (Fy, Fy,--- | F,)
eremu bektoriala. Orduan, f-ren gradientea V f = ( g 951 e %) da. F eremu bektorialaren di-
bergentzia,
oF oF,
V. F=2"24...
8951 + + 8xn
izango da eta f funtzioaren laplacearra
0% f 0% f
Af=V2f=V-(VFf)= L +...0 L.

Bestalde, aztertuko ditugun ekuazioak eta beraien soluzioak zein eremutan dauden definituta
finkatzea ezinbestekoa da. Horretarako Hilberten espazioa zer den definitu behar dugu.

Definizioa 4. Izan bedi V espazio bektorial lineal bat. V' gaineko (-, -) biderketa eskalarra V' x
V' — C aplikazio bat da non edozein x,y, z € V, a € C balioetarako honako hau betetzen den:

* (ax +y,2) = alx,z) > +(y, 2) (lineala lehen sarreran),

o (x,y) = (y, x) (simetriko konplexua),

e (x,z) >0, eta (x,x) = 0 baldin eta soilik baldin x = 0 (positiboki definitua).
Biderketa eskalarra duen edozein espazio bektorial lineal, V', aurrehilbert dela esaten da.

Definizioa 5. Izan bedi (V, (-, -)) aurrehilbert espazioa. Orduan, edozein v € V baliotarako defini
dezagun
1
[0l = (v, v)>.

Orduan, || - || V gaineko norma bat da.

Definizioa 6. Izan bedi (V, (-, -)) aurrehilbert espazioa. Orduan, V Hilberten espazioa dela esan-
go dugu V' espazio osoa baldin bada. Hau da, V -ren Cauchyren segida guztiak konbergenteak
badira biderketa eskalarrak sortutako norman.

Adibidea 2. Izan bedi honako espazio hau:

L*(R3,C) := {¢ ‘R3 > C: (/RS |q,z)(gc)|2d:c>é < oo} .

Orduan, L*(R3,C) espazioa Hilberten espazioa da. Espazio horretako v eta ¢ funtzioen arteko
biderkadura eskalarra honela definitzen delarik

w.0) = [ v@ods,
eta norma |[ ]| 2 = (10, 0)) = (fos [1o(2)[2d) 2.

Mekanika kuantikoan espazio ohikoenetako bat L?(R3, C) Hilberten espazioa da. Eta espazio
honen orokorpen bat izango da Diracen ekuazioaren espazio naturala.
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3. Mekanika kuantiko erlatibista

XX. mendearen hasieran Fisika klasikoa paradigma nagusi bezala inposatzen zen arren, es-
perimentu batzuek eredu horien limitazioak nabarmendu zituzten. Alde batetik, Einsteinek, 1905.
urtean argitaratutako efektu fotoelektrikoari buruzko lanean, argi izpiak argiaren partikulez osatu-
rik daudela esan zuen. Gaur egun argi partikula horiek fotoi bezala ezagutzen dira. Aldi berean, de
Broglie-k materiaren uhin eredu bat proposatu zuen. Uhin-partikula dualitate honek eraman zuen
fisika berri bat sortzera: fisika kuantikoa deiturikoa. Ideia hau naturako fenomenoen interpretazio
probabilistikoan oinarritzen da.

Fisika kuantikoaren lehen postulatuak dio sistema kuantiko bateko ¢ aldiuneko egoera v uhin-
funtzio baten bidez deskribatzen dela. Uhin funtzio hau Hilberten espazio bateko funtzio baten
bidez adierazten da (askotan L?(R3, C)), non ¢t € R guztietarako

i = [ ot o)Pds =1

den. Kontextu honetan |1/ (¢, x)|? kantitatea honela interpretatzen da: t aldiunean partikula z po-
sizioan egoteko probabilitate dentsitatea bezala. Eta egoera kuantiko horien denborarekiko ebolu-
zioa Schrodingerren ekuazioaren bidez deskribatzen dela postulatzen dute.

Mekanika kuantikoa mekanika klasikoak aztertu ezin zituen problemak azaltzeko sortua izan
zen. Atomoak eta partikula subatomikoen propietate fisikoak deskribatzeko besteak beste. Schro-
dingerren ekuazioaren soluzioaren (uhin funtzioaren, v (¢, x)) interpretazioetako bat honako hau
da: partikulak ¢ aldiunean posizio konkretu baten egoteko probabilitatearekin erlazionatuta dagoen
balio bat ematen du eta balio hauek konplexuak izan daitezke.

Mekanika klasikoak eskala mikroskopikoko problemak deskribatzeko arazoak zituen modu
berean mekanika kuantikoak eta, konkretuki, Schrodingerren ekuazioak arazoak izan zituen arin
mugitzen ziren partikulekin. Honen harira galdera praktiko bat sortu zen: nola deskriba ditzakegu
argiaren abiaduratik hurbil mugitzen diren partikulen propietate fisikoak? Ikertzaileek erlatibita-
tearekin bat zetorren mekanika kuantikoaren teoria bat sortzen saiatu ziran. Baina behin eta berriz
arazo teknikoekin aurkitzen ziren. Konkretuki beraien saiakeretan probabilitate negatiboak aurki-
tzen zituzten, eta hau ezinezkoa da, probabilitatearen ohiko definizioagatik balioak [0, 1] tartean
egon behar baitira. Beraz, zeintzuk dira elektroiak modu egoki baten deskribatzen dituzten uhin
funtzioak? Nolakoa izan behar da uhin-funtzio horien dinamikak deskribatzen dituen ekuazioa?

Honelako galderei eman zien erantzuna Paul Dirac fisikariak 1928. urtean argitaratu zituen
bi artikuluetan [1, 2]. Erlatibitatearen eskakizunak kontuan hartu ahal izateko Diracek honako
proposamen harrigarri hau egin zuen: uhin-funtzioa ez da funtzio (balio) bakar bat izan behar,
baizik eta 4 balio dituen bektore bat.

Ikus dezagun, modu sinplifikatu batean, nola heldu zen ideia horretara. Arestian aipatutako
Schrodingerren ekuazioa Newtonen legeen berrinterpretazio bat bezala ikus daiteke, non balio
asko uhin-funtzioan eragiten lortzen diren. Normalean, uhin-funtzioari deribatu eragilea aplika-
tzen. Gogora dezagun Schrodingerren ekuazioa dimentsio batean energia potentzialik gabe, hau
da, kanpoko indarren eraginik gabe:

h? 02
2m 027"
Bere garaian Schrodingerrek eta beste fisikari batzuek oinarri bezala hartu zuten ekuazioa guztiok
ezagutzen dugun honako ekuazio hau da:

ihgtw(:c,t) =— (x,1).

1
E = imUQ,
non F energia zinetikoa den, m masa eta v abiadura. Hau da, energia zinetikoa masa eta abiadu-

raren bitartez nola kalkulatu daitekeen esaten duen ekuazioa. Bestalde, momentu lineala, p, masa
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bider abiadura eginez kalkula daiteke, hau da,
p = mu.

Beraz, energia zinetikoa momentu lineala eta masaren bitartez honela adieraz daiteke:

1 P2 1
E=-m (—) = —p 1

2 m 2mp M
Korrespondentziaren printzipioak energia zinetikoa eta momentua denborarekiko eta espazioare-
kiko deribatuekin erlazionatzen ditu:

o
E—s ihe
o

0
— th—.
P ox
Beraz, lenguai kuantiko berrian Schrodingerren ekuazioak erlazionatzen digu uhin-funtzioaren
denborarekiko deribatu bat, energia zinetikoa errepresentatzen duena, uhin-funtzioaren espazioa-
rekiko bigarren deribatuarekin, hau da, momentua karratura errepresentatzen duena,
0 h? 92

th—Y(z,t) = ——=—=Y(z,t).
8tw( *) 2m8x2w( *)

Ekuazio honek fenomeno fisiko ugari deskribatzen ditu, horien artean partikulekin erlazionatuta-
koak. Ekuazio horrek partikula baten dinamika deskribatzeko balio du hutsean, hau da, kanpoko
indarren eraginik gabe. Aldiz, partikula desberdinen arteko interakzioa ere deskriba dezake V'
energia potentzial bat gehitzen baldin badugu,

.0 n? 92
Zha@ﬁ(%ﬂ = _%wd]('xaﬂ + Vﬂ)(l‘,t)

Ekuazioari gehitutako potentzialak elektrikoak, magnetikoak edo bestelakoak izan daitezke. Eta
potentziladun ekuazioak aztertzea da gaur egun interesgarriena. Hala ere ekuazio hau ez dator bat
Einsteinen erlatibitate bereziaren oinarrizko ideiarekin, non denbora eta espazioa modu parekaga-
rri batean sartu behar diren ekuazioan. Hau da, aldagai biak egon behar dira deribatu bakarrarekin
edo biak bi deribaturekin. Eta ez, bat deribatu batekin eta bestea birekin, Schrodingerren ekuazioan
agertzen den bezala.

Beraz, bi teoria horiek bat egiteko arazo batekin topo egin dugu. Einstein bera izan zen arazo
horri aurre egiteko lehen oinarria jarri zuena. Konturatu zen ordurarte erabilitako ekuazio famatua,
(1), osatu gabea zegoela. Eta honako ekuazio berria proposatu zuen energia erlatibista deskriba-
tzeko

E? = #p? + m2t.
Ohartu Einsteinek proposatutako ekuazio berria geldi dauden objetuei aplikatuz gero, hau da, abia-
dura nulua eta ondorioz momentu linela, p, zero den kasura aplikatuz, (1) erlazioa errekuperatzen

dela. Orain, berriz ere korrespondentzia printzipioa erabiliz, Einsteinen ekuazio berria honela be-
rridatz daiteke

—R2—=ip(x,t) = —c2h2§;¢(:¢, t) + m2ctp(x, t).

Ekuazio hau Klein-Gordon-en ekuazioa bezala ezagutzen da. Eta ekuazio honetan bi aldagaiekiko
deribatua bigarren ordenekoak dira. Aldiz, ekuazio hau ez da egokia probabilitate funtzio bat des-
kribatzeko, hori egiten saiatuz gero probabilitate negatiboak agertzen baitira. Eta badakigu hori ez
dagoela ondo definituta. Diracek uste zuen arazo hori energia karratura hartzetik zetorrela. Beraz,
bere erro karratua hartzean pentsatu zuen, hau da,

c2p2? + m2ct. )
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Edo, baliokideki, Klein-Gordonen ekuazioaren erro karratua,

Zhg¢($ t) = \/—02h2a2 + m2ct Y(x,t)
ot 0x? e

Aldagai espazialarekiko bigarren deribatuaren erro karratua ondo defini daiteke Fourierren trans-
formatuaren bidez. Baina Diracek ezin zuen aurkitu modurik potentzial elektromagnetikoak erla-
tibistikoki inbariantea zen era batean gehitzeko. Hau da, ezin zuen Schrodingerren ekuazioko V'
terminoaren baliokidea dena gehitu. Beraz, ekuazio berri bat beharrrezkoa zen.

Gainera, ekuazio berri horrek elektroien barne estruktura deskribatzeko gai izan behar zen,
hau da, espina deskribatzeko gai. Klein-Gordonen ekuazioa uhin-funtzio eskalar batekin ez zen
horretarako gai. Horrez gain, mekanika kuantikoko eboluzio ekuazio batek lehen ordenako den-
borarekiko deribatua izan beharko zuen. Beraz, energia-momentu erlazioa kontsideratu zuen, (2),
baina mekanika kuantikoko hizkuntzara itzuli aurretik linealizatu egin zuen. Hau da, honako ber-
dintza hau idatzi zuen

E=ap+ Bm,

« eta ( balio batzuetarako. Aurrerantzean ¢ = 1 hartuko da kontuak sinplifikatzeko. Hau da, pausu
analogoak jarraitu daitezke c orokor batentzat baina ondorioa ez da aldatuko. Diracek honako gal-
dera hau planteatu zuen. Posiblea al da « eta 3 balioak aurkitzea Einsteinen erlatibitate bereziaren
formularekin bat egiteko? Hau da,

Ja,6:E=ap+ fm= E?=p*+m?
Ikus dezagun zer gertatzen den F-ren adierazpen berriaren karratua egiten dugunean:
E? = (ap + Bm)* = a®p” + B*m* + (o + Ba)mp.

Beraz, azken adierazpen hori p? + m? adierazpenaren berdina izateko gertatu beharrekoa honako
hau da:
=1, %=1, af + Ba=0.

Hiru berdintza horiek aztertzen baditugu zerbait arraroa gertatzen ari dela konturatzen gara. Baldin
eta

af = fa

bada, orduan, hirugarren baldintzatik honako hau ondorioztatzen da
af+fa=2af=0= a=0edo S =0.

Eta hori ez dator bat a® = 1 eta 32 = 1 baldintzak betetzearekin.

Orduan, zer ari da gertatzen? Suposatu dugun hipotesia (a5 = [a) ez al da beti egia? Ba,
zenbaki erreal edo konplexuetan pentsatzen badugu, bai, hori beti da horrela. Zenbaki errealak
eta konplexuak beraien artean konmutatzen dutelako, hau da, a5 — Sa = 0 betetzen dute. Aldiz,
« eta § matrizeak badira, orduan o = [« berdintza ez da beti betetzen. Eta honek Diracen
ideia harrigarri eta berritzailera garamatza. Zenbaki eta funtzio eskalarretara mugatu beharrean,
Schrodingerren ekuazioan egiten den bezala, matrize eta bektore funtzioen terminoetan pentsatzea.
Beraz, Diracek ikusi zuen bai existitzen dela berak bilatzen zuen ekuazioa, eta hau, lehen ordenako
deribatu partzialetako ekuazio matrizial bat da bektoreetan eragiten duena.

Hau da Diracek asmatutako ekuazioa arestian aipatutako arazo guztiak konpontzen dituena:

0 ‘
law(t, JJ) = (—ZOé -V + Bm)w(ta flﬁ'),
non hiru dimentsiotako ekuaziorako o = (v, a2, avg) bektore matriziala, o, k = 1,2, 3, eta 3

4 x 4-ko matrizeak eta 1) (t, ) 4 osagaitako bektorea diren. Ekuazio horri potentzial elektromag-
netikoak gehitu ahal zaizkio beharrezkoak diren propietate fisikoak mantentzen dituelarik.
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4. Diracen ekuazioa

Azter dezagun orain zehatzago Diracen ekuazioa, R3-n honela definitzen dena:

S (t, ) = Hop(t, ), 3)

non (¢, z) : R x R® — C*. Hy eragileari Hamiltondarra deritzo eta honela definitzen da:
Hy = —ia-V + pm,

non o = (v, ag, a3) hiru osagaitako bektore matriziala den eta a, 5 € Myx4(C), k = 1,2,3.
Matrize hauei Diracen matrizeak deritze eta honela definitzen dira

. 0 Ok . ]IQ 0
“(a ) o=V )

non Iy 2 X 2-ko identitate matrizea den eta o, € Mayx2(C),k = 1,2,3, Pauliren matrizeak
deritzen matrizeak dira honako era honetan definitzen direlarik

I — 10 (01 (0 — (1 0
>=\o 1) "= \10) 27 i o) Z7\o -1 )
H)j eragilearen lehen terminoa lehen ordenako eragile diferentzial matriziala da. Zehazki

a-V =a10] + a0y + az0s

non 0; x; aldagaiarekiko deribatu partziala, %, adierazteko modu laburtua den. Beraz, Hy espli-
zituki adierazita honako eragile hau izango da:

m 0 03 01 — 10y
H_( mly m-v)_ 0 m O +i0y  —03
0= —i0 -V —m]IQ - (93 81 — iag —m 0
01 + 0o —03 0 —m

Diracen matrizeek aurreko ataleko baldintzak betetzen dituzte. Konkretuki
aqoy + apog = 20114, 5,k = 1,2, 3,

Bog + B =0,k =1,2,3,
B =1,

non Jy; Kronecker-en delta den, hau da, 1 balioa hartzen du j = k denean eta 0 gainontzekoetan.
Horrez gain, m konstante positibo eta erreal bat izango da, partikularen masa deskribatzen duena.
Masa nulua den kasuan, m = 0, Hy masa bako Diracen eragilea deritzo eta masaduna baldin eta
m > ( bada.
Matrizeek betetzen dituzten konmutazio erregelen ondorio garrantzitsuetako bat honako hau
da:
HE = (—A 4+ m?)],.

Identitate horrek Diracen eragilea eta Laplaziarraren arteko erlazioa erakusten du. Horrez gain,
10y — Hy bere konjokatuarekin biderkatzerakoan Klein-Gordonen eragilea lortzen da,

(10, + Ho) (10, — Ho) = (=07 + A —m?) Ly. 4)
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Hj eragilearekin egiten diren eragiketak ondo definituta egoteko beharrezkoa da ¢/ funtzioa
L?(R3,C*) espazioan egotea. Espazio hau, arestian aipatutako L?(R3, C) Hilberten espazioaren
orokorpena da. Ohartu Hy 4 x 4-ko eragile matrizial bat dela eta, ondorioz, lau osagaitako bekto-
reetan eragiten duela. Hau da, ¢ = (11,2, 3,%4)T nonv; € L2(R?,C), i = 1,2, 3, 4.

L?(R3,C*) espazioko biderketa eskalarra honela definitzen da

.8 paqeoien = [ (1@ + (@) 32(0) + 1a(w)5(0) + Vi@l )

eta norma
M%WWQj/W@Wm—/ﬂmmPH%MPH%MFHMMWm-
R3 R3

Honen inguruan gehiago sakontzeko begiratu [4] eta [5].

Paul Diracek sortutako ekuazioarenkin eta zehazki -k lau osagai izatearekin erlazionatuta
honako ideia hau sortu zen: ekuazioaren soluzio guztiek non elektroiek energia positiboa zuten
bazuten bere baliokidea energia negatiboarekin. Hortik sortu zen positroiaren idea. 1932. urtean
Andersonek positroia aurkitu zuenean Dirac betikotu zen, 1933. urtean Schrodingerrekin fisikako
Nobel saria partekatu zuelarik.
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