References
Adebiyi, S. O., Oyatoye, E. O., & Amole, B. B. (2016). Relevant drivers for customers` churn and retention decision in the Nigerian mobile telecommunication industry. Journal of Competitiveness, 6(3), 52-67. https://doi.org/10.7441/joc.2016.03.04
Ahn, J. H., Han, S. P., & Lee, Y. S. (2006). Customer churn analysis: Churn determinants and mediation effects of partial defection in the Korean mobile telecommunications service industry. Telecommunications Policy, 30(10-11), 552-568. https://doi.org/10.1016/j.telpol.2006.09.006
Ahn, J., Hwang, J., Kim, D., Choi, H., & Kang, S. (2020). A Survey on churn analysis in various business domains. IEEE Access, 8, 220816-220839. https://doi.org/10.1109/access.2020.3042657
Al-Mashraie, M., Chung, S. H., & Jeon, H. W. (2020). Customer switching behavior analysis in the telecommunication industry via push-pull-mooring framework: A machine learning approach. Computers & Industrial Engineering, 144. https://doi.org/10.1016/j.cie.2020.106476
Amin, A., Shah, B., Khattak, A. M., Moreira, F. J. L., Ali, G., Rocha, A., & Anwar, S. (2019). Cross-company customer churn predic-tion in telecommunication: A comparison of data transformation methods. International Journal of Information Management, 46, 304-319. https://doi.org/10.1016/j.ijinfomgt.2018.08.015
Amiri, H., & Daume III, H. (2016). Short text representation for detecting churn in microblogs. Paper presented at the Thirtieth AAAI Conference on Artificial Intelligence.
Anderson, E. W., Fornell, C., & Lehmann, D. R. (1994). Customer satisfaction, market share, and profitability - Findings from Sweden. Journal of Marketing, 58(3), 53-66. https://doi.org/10.1177/002224299405800304
Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007
Athanassopoulos, A. D. (2000). Customer satisfaction cues to support market segmentation and explain switching behavior. Journal of Business Research, 47(3), 191-207. https://doi.org/10.1016/s0148-2963(98)00060-5
Aydin, S., & Ozer, G. (2005). The analysis of antecedents of customer loyalty in the Turkish mobile telecommunication market. European Journal of Marketing, 39(7-6), 910-925. https://doi.org/10.1108/03090560510601833
Bansal, H. S., Irving, P. G., & Taylor, S. F. (2004). A three-component model of customer commitment to service providers. Journal of the Academy of Marketing Science, 32(3), 234-250. https://doi.org/10.1177/0092070304263332
Becker, J. U., Spann, M., & Schulze, T. (2015). Implications of minimum contract durations on customer retention. Marketing Letters, 26(4), 579-592. https://doi.org/10.1007/s11002-014-9293-2
Benedek, G., Lubloy, A., & Vastag, G. (2014). The Importance of Social Embeddedness: Churn Models at Mobile Providers. Decision Sciences, 45(1), 175-201. https://doi.org/10.1111/deci.12057
Bolton, R. N. (1998). A dynamic model of the duration of the customer's relationship with a continuous service provider: The role of satisfaction. Marketing Science, 17(1), 45-65. https://doi.org/10.1287/mksc.17.1.45
Buckinx, W., & Van den Poel, D. (2005). Customer base analysis: Partial defection of behaviourally loyal clients in a non-contractual FMCG retail setting. European Journal of Operational Research, 164(1), 252-268. https://doi.org/10.1016/j.ejor.2003.12.010
Burez, J., & Van den Poel, D. (2007). CRM at a pay-TV company: Using analytical models to reduce customer attrition by targeted marketing for subscription services. Expert Systems with Applications, 32(2), 277-288. https://doi.org/10.1016/j.eswa.2005.11.037
Burez, J., & Van den Poel, D. (2009). Handling class imbalance in customer churn prediction. Expert Systems with Applications, 36(3), 4626-4636. https://doi.org/10.1016/j.eswa.2008.05.027
Burnham, T. A., Frels, J. K., & Mahajan, V. (2003). Consumer switching costs: A typology, antecedents, and consequences. Journal of the Academy of Marketing Science, 31(2), 109-126. https://doi.org/10.1177/0092070302250897
Callon, M., Courtial, J. P., & Laville, F. (1991). Co-word analysis as a tool for describing the network of interactions between basic and technological research - The case of polymer chemistry. Scientometrics, 22(1), 155-205. https://doi.org/10.1007/bf02019280
Callon, M., Courtial, J. P., Turner, W. A., & Bauin, S. (1983). From translations to problematic networks - An introduction to co-word analysis. Social Science Information Sur Les Sciences Sociales, 22(2), 191-235. https://doi.org/10.1177/053901883022002003
Carrizo-Moreira, A., Freitas-da Silva, P. M., & Ferreira-Moutinho, V. M. (2017). The effects of brand experiences on quality, satisfac-tion and loyalty: An empirical study in the telecommunications multiple-play service market. Innovar, 27(64), 23-38. https://doi.org/ 10.15446/innovar.v27n64.62366
Chen, P. Y., & Hitt, L. M. (2002). Measuring switching costs and the determinants of customer retention in Internet-enabled busi-nesses: A study of the Online brokerage industry. Information Systems Research, 13(3), 255-274. https://doi.org/10.1287/isre.13.3.255.78
Cobo, M. J., Lopez-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). Science mapping software tools: review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7), 1382-1402. https://doi.org/10.1002/asi.21525
Coussement, K. (2014). Improving customer retention management through cost-sensitive learning. European Journal of Marketing, 48(3-4), 477-495. https://doi.org/10.1108/ejm-03-2012-0180
Coussement, K., & Van den Poel, D. (2009). Improving customer attrition prediction by integrating emotions from client/company interaction emails and evaluating multiple classifiers. Expert Systems with Applications, 36(3), 6127-6134. https://doi.org/10.1016/j.eswa.2008.07.021
De Caigny, A., Coussement, K., & De Bock, K. W. (2018). A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees. European Journal of Operational Research, 269(2), 760-772. https://doi.org/10.1016/j.ejor.2018.02.009
de Haan, E., Verhoef, P. C., & Wiesel, T. (2015). The predictive ability of different customer feedback metrics for retention. Interna-tional Journal of Research in Marketing, 32(2), 195-206. https://doi.org/10.1016/j.ijresmar.2015.02.004
Eck, N. J. v., & Waltman, L. (2009). How to normalize co-occurrence data? An analysis of some well‐known similarity measures. Journal of the American society for information science and technology, 60(8), 1635-1651. https://doi.org/10.1002/asi.21075
Ellegaard, O., & Wallin, J. A. (2015). The bibliometric analysis of scholarly production: How great is the impact? Scientometrics, 105(3), 1809-1831. https://doi.org/10.1007/s11192-015-1645-z
Eshghi, A., Haughton, D., & Topi, H. (2007). Determinants of customer loyalty in the wireless telecommunications industry. Tele-communications Policy, 31(2), 93-106. https://doi.org/10.1016/j.telpol.2006.12.005
Ferreira, F. A. F. (2018). Mapping the field of arts-based management: Bibliographic coupling and co-citation analyses. Journal of Business Research, 85, 348-357. https://doi.org/10.1016/j.jbusres.2017.03.026
Fischbach, K., Putzke, J., & Schoder, D. (2011). Co-authorship networks in electronic markets research. Electronic Markets, 21(1), 19-40. https://doi.org/10.1007/s12525-011-0051-5
Ganesh, J., Arnold, M. J., & Reynolds, K. E. (2000). Understanding the customer base of service providers: An examination of the differences between switchers and stayers. Journal of Marketing, 64(3), 65-87. https://doi.org/10.1509/jmkg.64.3.65.18028
Garfield, E., & Sher, I. H. (1993). KEYWORDS-PLUS(TM) - Algorithmic derivative indexing. Journal of the American Society for Information Science, 44(5), 298-299. https://doi.org/10.1002/(sici)1097-4571(199306)44:5<298::aid-asi5>3.0.co;2-a
Gentile, C., Spiller, N., & Noci, G. (2007). How to sustain the customer experience:: An overview of experience components that co-create value with the customer. European management journal, 25(5), 395-410. https://doi.org/ /10.1016/j.emj.2007.08.005
Gerpott, T. J., & Ahmadi, N. (2015). Regaining drifting mobile communication customers: Predicting the odds of success of winback efforts with competing risks regression. Expert Systems with Applications, 42(21), 7917-7928. https://doi.org/10.1016/j.eswa.2015.05.011
Haddaway, N. R. A. U. P. C. C., & McGuinness, L. A. (2021). PRISMA2020: R package and ShinyApp for producing PRISMA 2020 compliant flow diagrams (Version 0.0.2): Zenodo. Retrieved from http://doi.org/10.5281/zenodo.5082518
Hadden, J., Tiwari, A., Roy, R., & Ruta, D. (2007). Computer assisted customer churn management: State-of-the-art and future trends. Computers & Operations Research, 34(10), 2902-2917. https://doi.org/10.1016/j.cor.2005.11.007
Iglesias, O., Singh, J. J., & Batista-Foguet, J. M. (2011). The role of brand experience and affective commitment in determining brand loyalty. Journal of Brand Management, 18(8), 570-582. https://doi.org/10.1057/bm.2010.58
Jahromi, A. T., Stakhovych, S., & Ewing, M. (2014). Managing B2B customer churn, retention and profitability. Industrial Marketing Management, 43(7), 1258-1268. https://doi.org/10.1016/j.indmarman.2014.06.016
Jones, M. A., Mothersbaugh, D. L., & Beatty, S. E. (2000). Switching barriers and repurchase intentions in services. Journal of Retail-ing, 76(2), 259-274. https://doi.org/10.1016/s0022-4359(00)00024-5
Keaveney, S. M. (1995). Customer switching behavior in-service industries - An exploratory-study. Journal of Marketing, 59(2), 71-82. https://doi.org/10.2307/1252074
Keaveney, S. M., & Parthasarathy, M. (2001). Customer switching behavior in online services: An exploratory study of the role of selected attitudinal, behavioral, and demographic factors. Journal of the Academy of Marketing Science, 29(4), 374-390. https://doi.org/10.1177/03079450094225
Kessler, M. M. (1963). Bibliographic coupling between scientific papers. American Documentation, 14(1), 10-25. https://doi.org/10.1002/asi.5090140103
Kumar, V., Leszkiewicz, A., & Herbst, A. (2018). Are you back for good or still shopping around? Investigating customers’ repeat churn behavior. Journal of Marketing Research, 55(2), 208-225. https://doi.org/10.1509/jmr.16.0623
Kyei, D. A., & Bayoh, A. T. M. (2017). Innovation and customer retention in the Ghanaian telecommunication industry. International Journal of Innovation, 5(2), 171-183. https://doi.org/10.5585/iji.v5i2.154
Lemmens, A., & Croux, C. (2006). Bagging and boosting classification trees to predict churn. Journal of Marketing Research, 43(2), 276-286. https://doi.org/10.1509/jmkr.43.2.276
Lemon, K. N., & Verhoef, P. C. (2016). Understanding customer experience throughout the customer journey. Journal of Marketing, 80(6), 69-96. https://doi.org/10.1509/jm.15.0420
Mahajan, V., Misra, R., & Mahajan, R. (2015). Review of data mining techniques for churn prediction in telecom. Journal of Informa-tion and Organizational Sciences, 39(2), 183-197.
Meyer, C., & Schwager, A. (2007). Understanding customer experience. Harvard Business Review, 85(2), 116-26,157.
Moreira, A. C., Silva, P., & Moutinho, V. (2016). Differences between stayers, switchers, and heavy switchers: A study in the tele-communications service market. Marketing Intelligence & Planning, 34(6), 843-862. https://doi.org/10.1108/MIP-07-2015-0128
Mozer, M. C., Wolniewicz, R., Grimes, D. B., Johnson, E., & Kaushansky, H. (2000). Predicting subscriber dissatisfaction and improving retention in the wireless telecommunications industry. Ieee Transactions on Neural Networks, 11(3), 690-696. https://doi.org/10.1109/72.846740
Neslin, S. A., Gupta, S., Kamakura, W., Lu, J. X., & Mason, C. H. (2006). Defection detection: Measuring and understanding the predictive accuracy of customer churn models. Journal of Marketing Research, 43(2), 204-211. https://doi.org/10.1509/jmkr.43.2.204
Newman, M. E., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical review E, 69(2), 026113. https://doi.org/10.1103/physreve.69.026113
Orman, G. K., & Labatut, V. (2009). A comparison of community detection algorithms on artificial networks. Paper presented at the International conference on discovery science. https://doi.org/10.1007/978-3-642-04747-3_20
Peters, H. P. F., & Vanraan, A. F. J. (1991). Structuring scientific activities by coauthor analysis - An exercise on a university-faculty level. Scientometrics, 20(1), 235-255. https://doi.org/10.1007/bf02018157
Polo, Y., & Sese, F. J. (2009). How to Make Switching Costly The Role of Marketing and Relationship Characteristics. Journal of Service Research, 12(2), 119-137. https://doi.org/10.1177/1094670509335771
Pons, P., & Latapy, M. (2005). Computing communities in large networks using random walks. Paper presented at the International symposium on computer and information sciences. https://doi.org/10.1007/11569596_31
Prince, J., & Greenstein, S. (2014). Does service bundling reduce churn? Journal of Economics & Management Strategy, 23(4), 839-875. https://doi.org/10.1111/jems.12073
Pritchard, A. (1969). Statistical bibliography or bibliometrics. Journal of documentation, 25(4), 348-349.
Rajan Sachdeva, R. R. S. (2017). Evaluating prediction of customer churn behavior based on artificial bee colony algorithm. Interna-tional Journal of Engineering and Computer Science, 6(1). https://doi.org/10.18535/ijecs/v6i1.32
Ramos-Rodriguez, A. R., & Ruiz-Navarro, J. (2004). Changes in the intellectual structure of strategic management research: A bibliometric study of the Strategic Management Journal, 1980-2000. Strategic Management Journal, 25(10), 981-1004. https://doi.org/10.1002/smj.397
Reichheld, F. F., & Sasser, W. E. (1990). Zero defections - Quality comes to services. Harvard Business Review, 68(5), 105-111.
Rust, R. T., & Zahorik, A. J. (1993). Customer satisfaction, customer retention, and market share. Journal of Retailing, 69(2), 193-215. https://doi.org/10.1016/0022-4359(93)90003-2
Sirapracha, J., & Tocquer, G. (2012). Customer experience, brand image and customer loyalty in telecommunication services. Paper presented at the Int Conf Econ Bus Mark Manag.
Small, H. (1973). Co‐citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for information Science, 24(4), 265-269. https://doi.org/10.1002/asi.4630240406
Small, H. (1999). Visualizing science by citation mapping. Journal of the American Society for Information Science, 50(9), 799-813. https://doi.org/10.1002/(sici)1097-4571(1999)50:9<799::aid-asi9>3.0.co;2-g
Team, R. C. (2021). R: A language and environment for statistical computing.
Tsai, C. F., & Lu, Y. H. (2009). Customer churn prediction by hybrid neural networks. Expert Systems with Applications, 36(10), 12547-12553. https://doi.org/10.1016/j.eswa.2009.05.032
Ullah, I., Raza, B., Malik, A. K., Imran, M., Ul Islam, S., & Kim, S. W. (2019). A churn prediction model using random forest: Analysis of machine learning techniques for churn prediction and factor identification in telecom sector. Ieee Access, 7, 60134-60149. https://doi.org/10.1109/access.2019.2914999
Van den Poel, D., & Lariviere, B. (2004). Customer attrition analysis for financial services using proportional hazard models. Euro-pean Journal of Operational Research, 157(1), 196-217. https://doi.org/10.1016/s0377-2217(03)00069-9
van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523-538. https://doi.org/10.1007/s11192-009-0146-3
Verbeke, W., Dejaeger, K., Martens, D., Hur, J., & Baesens, B. (2012). New insights into churn prediction in the telecommunication sector: A profit driven data mining approach. European Journal of Operational Research, 218(1), 211-229. https://doi.org/10.1016/j.ejor.2011.09.031
Verbeke, W., Martens, D., Mues, C., & Baesens, B. (2011). Building comprehensible customer churn prediction models with advanced rule induction techniques. Expert Systems with Applications, 38(3), 2354-2364. https://doi.org/10.1016/j.eswa.2010.08.023
Wei, C. P., & Chiu, I. T. (2002). Turning telecommunications call details to churn prediction: a data mining approach. Expert Systems with Applications, 23(2), 103-112. https://doi.org/10.1016/s0957-4174(02)00030-1
Yan, E. J., & Ding, Y. (2011). Discovering author impact: A PageRank perspective. Information Processing & Management, 47(1), 125-134. https://doi.org/10.1016/j.ipm.2010.05.002
Zeithaml, V. A., Berry, L. L., & Parasuraman, A. (1996). The behavioral consequences of service quality. Journal of Marketing, 60(2), 31-46. https://doi.org/10.2307/1251929
Zhang, J., Yu, Q., Zheng, F. S., Long, C., Lu, Z. X., & Duan, Z. G. (2016). Comparing keywords plus of WOS and author keywords: A case study of patient adherence research. Journal of the Association for Information Science and Technology, 67(4), 967-972. https://doi.org/10.1002/asi.23437
Zhao, D. Z., & Strotmann, A. (2008). Evolution of research activities and intellectual influences in information science 1996-2005: Introducing author bibliographic-coupling analysis. Journal of the American Society for Information Science and Technology, 59(13), 2070-2086. https://doi.org/10.1002/asi.20910
Zupic, I., & Cater, T. (2015). Bibliometric methods in management and organization. Organizational Research Methods, 18(3), 429-472. https://doi.org/10.1177/1094428114562629