Motivaciones altruistas y egoístas para comprometerse con las apps de rastreo de contactos: Lecciones aprendidas de la pandemia por Covid-19

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Publicado 11-09-2024
Isabel Buil
Sara Catalán
Elaine Wallace

Resumen

Durante la pandemia por Covid-19, las apps de rastreo de contactos han supuesto una ayuda efectiva para doblegar la curva de contagios. Por lo tanto, resulta de gran importancia entender los factores que influyen en la adopción de apps de rastreo de contactos entre los ciudadanos. En concreto, una adopción y uso exitosos de estas apps dependen fuertemente de los motivos individuales. Por ello, este estudio se basa en la teoría de motivaciones altruistas y egoístas para los comportamientos sociales para analizar los motivos por los cuales los ciudadanos llevan a cabo determinados comportamientos voluntarios dirigidos a usar y promocionar el uso de apps de rastreo de contactos. Este estudio también examina el papel mediador de la confianza de los usuarios en la app. Datos de 221 usuarios de la app de rastreo de contactos de Irlanda fueron analizados. El modelo se testó usando modelos de ecuaciones estructurales con PLS. Los resultados muestran diferencias entre las motivaciones egoístas y altruistas a la hora de promover el uso de la app. La motivación egoísta promueve significativamente comportamientos voluntarios entre los ciudadanos y la confianza de los usuarios en la app media esta influencia. Sin embargo, en el contexto de la pandemia, la motivación altruista no juega un papel significativo a la hora de animar a los ciudadanos a llevar a cabo estos comportamientos voluntarios, ni directa ni indirectamente. Los resultados de este estudio pueden ayudar a tomar futuras decisiones sobre la implantación de apps de rastreo de contactos en el caso de nuevas pandemias o de otros contextos que requieran un registro diario cooperativo.

Cómo citar

Buil, I., Catalán, S., & Wallace, E. (2024). Motivaciones altruistas y egoístas para comprometerse con las apps de rastreo de contactos: Lecciones aprendidas de la pandemia por Covid-19. Cuadernos De Gestión, 24(2), 7–20. https://doi.org/10.5295/cdg.232047sc
Abstract 250 | PDF (English) Downloads 73

##plugins.themes.bootstrap3.article.details##

Keywords

Rastreo de contactos, Covid-19, Motivación altruista, Motivación egoísta, Comportamiento social

References
Abeler, J., Altmann, S., Milsom, L., Toussaert, S. and Zillessen, H. (2020). Support in the UK for app-based contact tracing of COVID-19. https://mfr.osf.io/render?url=https://osf.io/huqtr/?di rect%26mode=render%26action=download%26mode=render
Abuhammad, S., Khabour, O. and Alzoubi, K. (2020). COVID-19 contact-tracing technology: Acceptability and ethical issues of use. Patient Preference and Adherence, 14, 1639-1647.
Albrecht, R., Jarecki, J., Meier, D. and Rieskamp, J. (2021). Risk preferences and risk perception affect the acceptance of digital contact tracing. Humanities and Social Sciences Communications. 8, 195. https://doi.org/10.1057/s41599-021-00856-0
Altmann, S., Milson, L., Zillessen, H., Blasone, R., Gerdon, F., Bach, R., Kreuter, F., Nosenzo, D., Toussaert, S. and Abeler, J. (2020). Acceptability of app-based contact tracing for COVID-19: Cross-country survey evidence. JMIR mHealth and uHealth, 8, e19857. https://mhealth.jmir.org/2020/8/e19857/
Apuke, O. and Omar, B. (2021). User motivation in fake news sharing during the COVID-19 pandemic: an application of the uses and gratification theory. Online Information Review, 45, 220-239. https://doi.org/10.1108/OIR-03-2020-0116
Bachtiger, P., Adamson, A., Quint, J. and Peters, N. (2020). Belief of having had unconfirmed Covid-19 infection reduces willingness to participate in app-based contact tracing. NPJ Digital Medicine, 3, 146. https://www.nature.com/articles/s41746-020-00357-5
Batson, D. and Shaw, L. (1991). Evidence for altruism: Toward a pluralism of prosocial motives. Psychological Inquiry, 2, 107-122. https://www.jstor.org/stable/1449242
BBC News (2020). Coronavirus: The great contact-tracing apps mystery, 21st July 2020. https://www.bbc.com/news/technology-53485569
Birch, D., Memery, J. and De Silva Kanakaratne, M. (2018). The mindful consumer: Balancing egoistic and altruistic motivations to purchase local food. Journal of Retailing and Consumer Services, 40, 221-228. https://doi.org/10.1016/j.jretconser.2017.10.013
Blom, A., Wenz, A., Cornesse, C., Rettig, T., Fikel, M., Friedel, S., Möhring, K., Naumann, E., Reifenscheid, M. and Krieger, U. (2021). Barriers to the large-scale adoption of a COVID-19 contact tracing app in Germany: Survey Study. JMIR Journal of Medical Internet Research, 23. https://www.jmir.org/2021/3/e23362
Bove, L., Pervan, S., Beatty, S. and Shiu, E. (2009). Service worker role in encouraging customer organizational citizenship behaviors. Journal of Business Research, 62, 698-705. https://doi.org/10.1016/j.jbusres.2008.07.003
Buder, F., Dieckmann, A., Manewitsch, V., Dietrich, H., Wiertz, C., Banerjee, A., Acar, O. and Ghosh, A. (2020). Adoption rates for contact tracing app configurations in Germany. NIM Research Report June 2020. https://www.nim.org/en/publications/detail/researchreport-adoption-rates-for-contact-tracing-app
Carmines, E. and Zeller, R. (1979). Reliability and Validity Assessment. Sage University Paper Series on Quantitative Applications in the Social Sciences. Sage Publications, Beverly Hills and London.
Chan, E. and Saquib, N. (2021). Privacy concerns can explain unwillingness to download and use contact tracing apps when COVID-19 concerns are high. Computers in Human Behavior, 119, 106718. https://doi.org/10.1016/j.chb.2021.106718
Chao, C. (2019). Factors determining the behavioural intention to use mobile learning: An application and extension of the UTAUT model. Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.01652
Chin, W. (1998). The partial least squares approach for structural equation modelling. In Marcoulides, G.A. (Ed.), Modern Methods for Business Research (pp. 295-336). Lawrence Erlbaum Associates, London.
Choi, L. and Lotz, S. (2016). Motivations leading to customer citizenship behaviour in services: scale development and validation. Journal of Consumer Marketing, 33, 539-551. https://doi.org/10.1108/JCM-01-2016-1683
Choi, K., Wang, Y. and Sparks, B. (2019). Travel app users’ continued use intentions: It’s a matter of value and trust. Journal of Travel and Tourism Marketing, 36, 131-143. https://doi.org/10.1080/10548408.2018.1505580
Clark, C., Davila, A., Regis, M. and Kraus, S. (2020). Predictors of COVID-19 voluntary compliance behaviors: An international investigation. Global Transitions, 2, 76-82. https://doi.org/10.1016/j.glt.2020.06.003
Cocosila, M., Farrelly, G. and Trabelsi, H. (2022). Perceptions of users and non-users of an early contact tracing mobile application to fight COVID-19 spread: a value-based empirical investigation. Informa tion Technology & People, 36, 2088-2111. https://doi.org/10.1108/ITP-01-2021-0026
Costa, D., Maurer, M., Rossi, P., Nique, W. and Borges, A. (2021). Recycling cooperation and buying status. European Journal of Marketing, 53, 944-971. https://doi.org/10.1108/EJM-09-2017-0557
Dang, V., Nguyen, N. and Pervan, S. (2020). Retailer corporate social responsibility and consumer citizenship behavior: The mediating roles of perceived consumer effectiveness and consumer trust. Journal of Retailing and Consumer Services, 55, 102082. https://doi.org/10.1016/j.jretconser.2020.102082
Davies, I. and Gutsche, S. (2016). Consumer motivations for mainstream “ethical” consumption. European Journal of Marketing, 50, 1326-1347. https://doi.org/10.1108/EJM-11-2015-0795
Eisenberger, R., Armeli, S., Rexwinkel, B., Lynch, P. and Rhoades, L. (2001). Reciprocation of perceived organizational support. Journal of Applied Psychology, 86, 42-51. https://doi.org/10.1037/0021-9010.86.1.42
Fang, X., Freyer, T., Ho, C., Chen, Z. and Goette, L. (2022). Prosociality predicts individual behaviour and collective outcomes in the COVID-19 pandemic. Social Science & Medicine, 308, 115192. https://doi.org/10.1016/j.socscimed.2022.115192
Farronato, C., Iansiti, M., Bartosiak, M., Denicolai, S., Ferretti, L. and Fontana, R. (2020). How to get people to use contact-tracing apps. Harvard Business Review. https://hbr.org/2020/07/how-to-get-people-to-actually-use-contact-tracing-apps
Ferretti, L., Wymant, C., Kendall, M., Zhao, L., Nurtay, A., Abeler, L., Parker, M., Bonsall, D. and Fraser, C. (2020). Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science, 368. https://www.science.org/doi/10.1126/science.abb6936
Fornell, C. and Larcker, D.F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18, 39-50. https://doi.org/10.2307/3151312
Gebauer, J., Riketta, M., Broemer, P. and Maio, G. (2008). Pleasure and pressure based prosocial motivation: Divergent relations to subjective well-being. Journal of Research in Personality, 42, 399-420. https://doi.org/10.1016/j.jrp.2007.07.002
Gefen, D., Karahanna, E. and Straub, D. (2003). Trust and TAM in online shopping: an integrated model. MIS Quarterly, 27, 51-90. https://doi.org/10.2307/30036519
Groth, M., Mertens, D. and Murphy, R. (2004). Customers as good soldiers: Extending organizational citizenship behaviour research to the customer domain. In Handbook of organizational citizenship behaviour (pp. 441-430). Hauppauge, NY: Nova Science Publishers.
Gu, J., Xu, Y., Xu, H., Zhang, C. and Ling, H. (2017). Privacy concerns for mobile app download: An elaboration likelihood model perspective. Decision Support Systems, 94, 19-28. https://doi.org/10.1016/j.dss.2016.10.002
Guillon, M. and Kergall, P. (2020). Attitudes and opinions on quarantine and support for a contact-tracing application in France during the COVID-19 outbreak. Public Health, 188, 21-31. https://doi.org/10.1016/j.puhe.2020.08.026
Hair, J.F., Hult, G.T., Ringle, C.M. and Sarstedt, M. (2017). In A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) (2nd ed.). Sage Publications Inc., Thousand Oaks, CA.
Hennig-Thurau, T., Gwinner, K., Walsh, G. and Gremler, D. (2004). Electronic word-of-mouth via consumer-opinion platforms: What motivates consumers to articulate themselves on the Internet? Journal of Interactive Marketing, 18, 38-52. https://doi.org/10.1002/dir.10073
Hoffman, M. (1978). Psychological and biological perspective on altruism. International Journal of Behavioral Development, 1, 323-339. https://doi.org/10.1177/01650254780010040
Horstmann, K., Buecker, S., Krasko, J., Kritzler, S. and Terwiel, S. (2021). Why does or does not use the ‘Corona-Warn-App’ and why? European Journal of Public Health, 31, 49-51. https://doi.org/10.1093/eurpub/ckaa239
Horvath, L., Banducci, S. and James, O. (2022), Citizens’ attitudes to contact tracing apps. Journal of Experimental Political Science, 9, 118-130. https://doi.org/10.1017/XPS.2020.30
Hsu, C. and Lin, J. (2008). Acceptance of blog usage: The roles of technology acceptance, social influence and knowledge sharing motivation. Information & Management, 45, 65-74. https://doi.org/10.1016/j.im.2007.11.001
Hu, L. and Bentler, P. (1998). Fit indices in covariance structure modelling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3, 424-453. https://psycnet.apa.org/buy/1998-11538-003
Jansen-Kosterink, S., Hurmuz, M., den Ouden, M. and van Velsen, L. (2021). Predictors to use mobile apps for monitoring COVID-19 symptoms and contact tracing: Survey among Dutch citizens. JMIR Formative Research, 5. https://formative.jmir.org/2021/12/e28416
Joo, J. and Shin, M. (2020). Resolving the tension between full utilization of contact tracing app services and user stress as an effort to control the COVID-19 pandemic. Service Business, 14, 461-478. https://link.springer.com/article/10.1007/s11628-020-00424-7
Kankanhalli, A., Tan, B. and Wei, K. (2005). Contributing knowledge to electronic knowledge repositories: An empirical investigation. MIS Quarterly, 29, 113-143. https://doi.org/10.2307/25148670
Kaspar, K. (2020). Motivations for social distancing and app use as complementary measures to combat the COVID-19 pandemic: Quantitative survey study. JMIR Journal of Medical Internet Research, 2. https://www.jmir.org/2020/8/e21613/
Kurzweg, J. (2023). Top 51 Important Mobile App KPIs to Measure Performance 2023. https://uxcam.com/blog/top-50-mobile-app-kpis/
Kwarteng, M. A., Ntsiful, A., Osakwe, C. N. and Ofori, K. S. (2023). Modeling the acceptance and resistance to use mobile contact tracing apps: a developing nation perspective. Online Information Review, ahead-of-print No. https://doi.org/10.1108/OIR-10-2021-0533
Kim, S., Lee, K., Koo, C. and Yang, S. (2018). Examining the influencing factors of intention to share accommodations in online hospitality exchange networks. Journal of Travel & Tourism Marketing, 35, 16-31. https://doi.org/10.1080/10548408.2016.1244024
Kock, N. (2015). Common Method Bias in PLS-SEM: A full collinearity assessment approach. International Journal of E-Collaboration, 11, 1-10.
Kostka, G. and Habich-Sobiegalla, S. (2020). In times of crisis: Public perceptions towards COVID-19 contact tracing apps in China, Germany and the US. https://ssrn.com/abstract=3693783
Laor, T. and Lissitsa, S. (2022). Mainstream, on-demand and social media consumption and trust in government handling of the COVID crisis. Online Information Review, ahead-of-print. https://doi.org/10.1108/OIR-06-2021-0299
Lee, J. and Song, C. (2013). Effects of trust and perceived risk on user acceptance of a new technology service. Social Behavior and Personality, 41, 587-598. http://dx.doi.org/10.2139/ssrn.1703213
Lee, M, Kim, H. and Kim, O. (2015). Why do people retweet a tweet?: Altruistic, egoistic, and reciprocity motivations for retweeting. Psychologia, 58, 189-201. https://www.jstage.jst.go.jp/article/psysoc/58/4/58_189/_pdf
Lemmon, G. and Wayne, S. (2015). Underlying motives of organizational citizenship behaviour: Comparing egoistic and altruistic motivations. Journal of Leadership & Organizational Studies, 22, 129-148. https://journals.sagepub.com/doi/10.1177/1548051814535638
Lewandowsky, S., Dennis, S., Perfors, A., Kashima, Y., White, J., Garrett, P., Little, D. and Yesilada, M. (2021). Public acceptance of privacy-encroaching policies to address the COVID-19 pandemic in the United Kingdom. PLoS ONE, 16. https://doi.org/10.1371/journal.pone.0245740
Li, T., Yang, J., Faklaris, C., King, J., Agarwal, Y., Dabbish, L. and Hong, J. (2020). Decentralized is not risk-free: Understanding public perceptions of privacy-utility trade-offs in COVID-19 contact-tracing apps. https://arxiv.org/abs/2005.11957v1
Li, T., Cobb, C., Yang, J., Baviskar, S., Agarwal, Y., Li, B., Bauer, L. and Hong, J. (2021). What makes people install a COVID-19 contact-tracing app? Understanding the influence of app design and individual difference on contact-tracing app adoption intention. Pervasive and Mobile Computing, 75, 101439. https://doi.org/10.1016/j.pmcj.2021.101439
Lu, X. (2014). Ethical leadership and organizational citizenship behaviour: The mediating roles of cognitive and affective trust. Social Behavior and Personality, 42, 379-390. https://doi.org/10.2224/sbp.2014.42.3.379
Maner, J. and Gailliot, M. (2007). Altruism and egoism: prosocial motivations for helping depend on relationship context. European Journal of Social Psychology, 37, 347-358. https://doi.org/10.1002/ejsp.364
Naous, D., Bonner, M., Humbert, M. and Legner, C. (2020). Towards mass adoption of contact tracing apps – Learning from users’ preferences to improve app design. https://arxiv.org/abs/2011.12329
Naranjo-Zolotov, M., Oliveira, T., Cruz-Jesus, F., Martins, J., Gonçalves, R., Branco, F. and Xavier, N. (2019). Examining social capital and individual motivators to explain the adoption of online citizen participation. Future Generation Computer Systems, 92, 302-311. https://doi.org/10.1016/j.future.2018.09.044
Nunnally, J. and Bernstein, I. (1994). Psychometric Theory (3rd ed.). McGraw-Hill, New York.
O’Callaghan, M., Buckley, J., Fitzgerald, B., Johson, K., Laffey, J., McNicholas, B., Nuseibeh, B., O’Keefee, D., O’Keefee, I., Razzaq, A., Rekanar, V., Richardson, I., Simpkin, A., Abedin, J., Storni, C., Tsvyatkova, D., Walsh, J., Welsh, T. and Glynn, L. (2021). A national survey of attitudes to COVID-19 digital contact tracing in the Republic of Ireland. Irish Journal of Medical Science, 190, 863-887. https://pubmed.ncbi.nlm.nih.gov/33063226/
Pamplona da Costa, J., Sica de Campos, A., Cintra, P., Greco, L. and Poker, J. (2021). The nature of rapid response to COVID-19 in Latin America: an examination of Argentina, Brazil, Chile, Colombia and Mexico. Online Information Review, 45, 729-750. https://doi.org/10.1108/OIR-09-2020-0391
Pavlou, P. and Gefen, D. (2004). Building effective online marketplaces with institution-based trust. Information Systems Research, 15, 37-59. https://www.jstor.org/stable/23015898
Piatak, J. and Holt, S. (2020). Prosocial behaviors: A matter of altruism or public service motivation? Journal of Public Administration Research and Theory, 504-518. https://doi.org/10.1093/jopart/muz041
Piliavin, J. and Charng, H. (1990). Altruism: A review of recent theory and research. Annual Review of Sociology, 16, 27-65. https://doi.org/10.1146/annurev.so.16.080190.000331
Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., and Podsakoff, N. P. (2003). Common Method Biases in Behavioral Research: A Critical Review of the Literature and Recommended Remedies. Journal of Applied Psychology, 88, 879–903. https://doi.org/10.1037/0021-9010.88.5.879
Politi, E., Van Assche, J., Caprara, G.V. and Phalet, K. (2021). No man is an island: Psychological underpinnings of prosociality in the midst of the COVID-19 outbreak. Personality and Individual Differences, 171, 110534. https://doi.org/10.1016/j.paid.2020.110534
Reimer, T. and Benkenstein, M. (2016). Altruistic eWOM marketing: More than an alternative to monetary incentives. Journal of Retailing and Consumer Services, 31, 323-333. https://doi.org/10.1016/j.jretconser.2016.04.003
Reinartz, W., Haenlein, M. and Henseler, J. (2009). An empirical comparison of the efficacy of covariance-based and variance-based SEM. International Journal of Research in Marketing, 26, 332-344. https://doi.org/10.1016/j.ijresmar.2009.08.001
Resolve To Save Lives (2021). Covid-19 Contact Tracing PLAYBOOK. Metrics & monitoring. https://contacttracingplaybook.resolve tosavelives.org/checklists/metrics
Riemer, K., Ciriello, R., Peter, S. and Schlagwein, D. (2020). Digital contact-tracing adoption in the COVID-19 pandemic: IT governance for collective action at the societal level. European Journal of Information Systems, 29, 721-745. https://doi.org/10.1080/0960085X.2020.1819898
Roberts, D., Hughes, M. and Kertbo, K. (2014). Exploring consumers’ motivations to engage in innovation through co-creation activities. European Journal of Marketing, 48, 147-169. https://doi.org/10.1108/EJM-12-2010-0637
Rowe, F. (2020). Contact tracing apps and values dilemmas: A privacy paradox in a neo-liberal world. International Journal of Information Management, 55, 102178. https://doi.org/10.1016/j.ijinfomgt.2020.102178
Saw, Y., Tan, E., Liu, J. and Liu, J. (2021). Predicting public uptake of digital contact tracing during the COVID-19 pandemic: Results from a nationwide survey in Singapore. JMIR Journal of Medical Internet Research, 23. https://www.jmir.org/2021/2/e24730
Schechter, L. and Yuskavage, A. (2012). Inequality, reciprocity, and credit in social networks. American Journal of Agricultural Economics, 94, 402-410. https://www.jstor.org/stable/41331266
Schokkaert, E. (2006). The Empirical Analysis of Transfer Motives. Handbook of the Economics of Giving, Altruism and Reciprocity, 1, 127-181. https://doi.org/10.1016/S1574-0714(06)01002-5
Shahidi, N., Tossan, V., Bourliataux-Lajoinie, S. and Cacho-Elizondo, S. (2022). Behavioural intention to use a contact tracing application: The case of StopCovid in France. Journal of Retailing and Consumer Services, 68, 102998. https://doi.org/10.1016/j.jretconser.2022.102998
Shiau, W. and Chau, P. (2015). Does altruism matter on online group buying? Perspectives from egoistic and altruistic motivation. Information Technology & People, 28, 677-698. https://doi.org/10.1108/ITP-08-2014-0174
Singh, J. and Sirdeshmukh, D. (2000). Agency and trust mechanisms in consumer satisfaction and loyalty judgments. Journal of the Academy of Marketing Science, 28, 150-167. https://doi.org/10.1177/0092070300281014
Slade, E., Dwivedi, Y., Piercy, N. and Williams, M. (2015). Modeling consumers’ adoption intentions of remote mobile payments in the United Kingdom: Extending UTAUT with innovativeness, risk, and trust. Psychology & Marketing, 32, 860-873. https://doi.org/10.1002/mar.20823
Smith, D. (1981). Altruism, volunteers, and volunteerism. Journal of Voluntary Action Research, 10, 21-36. https://doi.org/10.1177/089976408101000105
Syropoulos, S. and Markowitz, E. M. (2021). Prosocial responses to COVID-19: Examining the role of gratitude, fairness and legacy motives. Personality and Individual Differences, 171, 110488. https://doi.org/10.1016/j.paid.2020.110488
Trang, S., Trenz, M., Weiger, W., Tarafdar, M. and Cheung, C. (2020). One app to trace them all? Examining app specifications for mass accept ance of contact-tracing apps. European Journal of Information Systems, 29, 415-428. https://doi.org/10.1080/0960085X.2020.1784046
Utz, C., Becker, S., Schnitzler, T., Farke, F., Herbert, F., Schaewitz, L., Degeling, M. and Dürmuth, M. (2021). Apps against the spread: Privacy implications and user acceptance of COVID-19-related smartphone apps on three continents. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3411764.3445517
van der Waal, N. E., de Wit, J., Bol, N., Ebbers, W., Hooft, L., Metting, E. and Van der Laan, L. N. (2022). Predictors of contact tracing app adoption: Integrating the UTAUT, HBM and contextual factors. Technology in So ciety, 71, 102101. https://doi.org/10.1016/j.techsoc.2022.102101
Venkatesh, V., Thong, J. and Xu, X. (2012). Consumer acceptance and use of information technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36, 157-178. https://ssrn.com/abstract=2002388
Von Wyl, V., Höglinger, M., Sieber, C., Kaufmann, M., Moser, A., Serra-Burriel, M., Ballouz, T., Menges, D., Frei, A. and Puhan, M. (2021). Drivers of acceptance of COVID-19 proximity tracing apps in Switzerland: Panel survey analysis. JMIR Public Health Surveillance, 7. https://publichealth.jmir.org/2021/1/e25701/
Walrave, M., Waeterloos, C. and Ponnet, K. (2021). Ready or not for contact tracing? Investigating the adoption intention of COVID-19 contact-tracing technology using an extended unified theory of acceptance and use of technology model. Cyberpsychology, Behavior, and Social Networking, 24, 77-383. https://doi.org/10.1089/cyber.2020.0483
Wasko, M. and Faraj, S. (2005). Why should I share? Examining social capital and knowledge contribution in electronic networks of practice. MIS Quarterly, 29, 35-57. https://doi.org/10.2307/25148667
Wiertz, C., Banerjee, A., Acar, O. and Ghosh, A. (2020). Predicted adoption rates of contact tracing app configurations – Insights from a choice-brand conjoint study with a representative sample of the UK population. University of London Institutional Repository. https://openaccess.city.ac.uk/id/eprint/24094/
Wnuk, A., Oleksy, T. and Maison, D. (2020). The acceptance of Covid-19 tracking technologies: The role of perceived threat, lack of control, and ideological beliefs. PLoS ONE, 15. https://doi.org/10.1371/journal.pone.0238973
Yi, Y. and Gong, T. (2013). Customer value co-creation behaviour: Scale development and validation. Journal of Business Research, 66, 1279-1284. https://doi.org/10.1016/j.jbusres.2012.02.026
Zhang, B., Kreps, S., McMurry, N. and McCain, R. (2020). Americans’ perceptions of privacy and surveillance in the COVID-19 pandemic. PLoS ONE, 15. https://doi.org/10.1371/journal.pone.0242652
Zimmermann, B., Fiske, A., Prainsack, B., Hangel, N., McLennan, S. and Buyx, A. (2021). Early perceptions of COVID-19 contact tracing apps in German-speaking countries: Comparative mixed methods study. JMIR Journal of Medical Internet Research, 23. https://www.jmir.org/2021/2/e25525/
Sección
Artículos