Memoria larga en la estructura de los rendimientos en mercados desarrollados

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Publicado 18-09-2018
Sharad Nath Bhattachary Mousumi Bhattacharya

Resumen

El presente estudio pretende investigar la existencia de propiedades de memoria larga en diez mercados de valores de distintos países desarrollados. Cuando las series de rendimientos exhiben memoria larga, estas series no son independientes del tiempo y los rendimientos pasados pueden ayudar a predecir rendimientos futuros, violando por tanto la hipótesis de eficiencia de los mercados. Esto plantea un serio desafío a los que defienden que los rendimientos siguen un camino aleatorio, indicando un componente potencialmente predecible en la dinámica de las series. Hemos calculado el estadístico clásico de Hurst Mandelbrot (R/S), el estadístico de Lo y el estadístico semiparamétrico GPH utilizando un método de regresión espectral. Los resultados sugieren la existencia de memoria larga en la volatilidad de los rendimientos y un paseo aleatorio para los logaritmos de las series, en general para todos los índices de mercado seleccionados. Los resultados están en línea con hechos contrastados para series temporales financieras.

Cómo citar

Bhattachary, S. N., & Bhattacharya, M. (2018). Memoria larga en la estructura de los rendimientos en mercados desarrollados. Cuadernos De Gestión, 13(2), 127–143. https://doi.org/10.5295/cdg.110312sb
Abstract 120 | PDF (English) Downloads 68

##plugins.themes.bootstrap3.article.details##

Keywords

Memoria larga, Rango reescalado, Integración fraccional, Regresión spectral

References
Andersen, T.G. and Bollerslev, T., 1997. Heterogeneous Information Arrivals And Return Volatility Dynamics: Uncovering The Long-Run In High Frequency Returns, Journal of Finance, 52 (3), 975-1005.
Andersen, T.G. and Bollerslev, T., 1998. Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts, International Economic Review, 39 (4), 885-905.
Andrews, D.W.K., 1991. Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation, Econometrica, 59, (3), 817-858.
Baillie, R.T., 1996. Long Memory Processes And Fractional Integration In Econometrics, Journal of Econometrics, 73, (1), 5-60.
Banerjee, A. and Urga, G., 2005. Modelling Structural Breaks, Long Memory and Stock Market Volatility: An Overview, Journal of Econometrics, 129, 1-34
Beran, J. and Ocker, D., 2001. Volatility of stock market indices - an analysis based on SEMIFAR models, Journal of Business and Economic Statistics, 19, (1), 103-116.
Breidt, F.J.; Crato, N. and de Lima, P., 1998. On The Detection and Estimation of Long Memory In Stochastic Volatility, Journal of Econometrics, 83, (1-2), 325-348.
Cajueiro, D.O. and Tabak, B.M., 2004. The Hurst’s exponent over time: testing the assertion that emerging markets are becoming more efficient, Physica A, 336, 521-537.
Davidian, M. and Carroll, R., 1987. Variance function Estimation, Journal of the American Statistical Association, 82, 1079–1091.
Dickey, D.A. and Fuller, W.A., 1979. Distribution of the Estimators for Autoregressive Time Series with a Unit Root, Journal of the American Statistical Association, 74 (366), 427–431.
Ding, Z.; Granger, C.W.J. and Engle, R.F., 1993. A Long Memory Property Of Stock Market Returns And A New Model, Journal of Empirical Finance, 1 (1), 83-106.
Geweke, J. and Porter-hudak, S., 1983. The Estimation And Application Of Long-Memory Time Series Models, Journal of Time Series Analysis, 4 (4), 221-238.
Granger, C. W. J., 1966. The Typical Spectral Shape Of An Economic Variable, Econometrica, 34 (1), 150-161.
Granger, C. W. J., 1998. Comment on Real and Spurious Long-Memory Properties of Stock-Market Data, Journal of Business and Economic Statistics, 16, 268-269.
Granger, C. W. J. and Ding, Z., 1995. Some Properties Of Absolute Return; An Alternative Measure Of Risk, Annales D’Economie et de Statistique, 40, 67 - 91.
Granger, C. W. J. and Ding, Z., 1996. Varieties Of Long Memory Models”, Journal of Econometrics, 73 (1), 61-77.
Granger, C. W. J. and Hyung, N., 2004. Occasional Structural Breaks and Long Memory with an application to the S*P 500 Absolute Stock Returns, Journal of Empirical Finance, 11 (3), 399-421.
Greene, M. T. and Fielitz, B. D., 1977. Long-Term Dependence In Common Stock Returns, Journal of Financial Economics, 4 (3), 339-349.
Harvey, A.C., 1993. Long Memory In Stochastic Volatility, Working Paper 10, London, School of Economics, Department of Statistics.
Hurst, H. E., 1951. Long-Term Storage Of Reservoirs: An Experimental Study, Transactions of the American Society of Civil Engineers, 116, 770-799.
Kang, S. H.; Cheong, C. and Yoon, S. M., 2010. Long memory volatility in Chinese stock markets, Physica A, 389, 1425–1433.
Liow, K. H., 2006. The Dynamics of Long Memory in Return and Volatility for International Real Estate Markets. http://dx.doi.org/10.2139/ssrn.886001
Lo, A.W., 1991. Long-Term Memory in Stock Market Prices, Econometrica, 59 (5), 1279-1313.
Mandelbrot, B.B. and Wallis, J.R., 1968. Noah, Joseph, and Operational Hydrology, Water Resources Research, 4 (39), 909-918.
Mandelbrot, B.B. and Wallis, J. R., 1969. Robustness Of The Rescaled Range R/S In The Measurement Of Noncyclic Long-Run Statistical Dependence, Water Resources Research, 5 (5), 967-988.
Mandelbrot, B.B., 1971. A Fast Fractional Gaussian Noise Generator, Water Resources Research, 7 (3), 543-553.
Mandelbrot, B. B., 1972. Possible Renements Of The Lognormal Hypothesis Concerning The Distribution Of Energy Dissipation In Intermitent Turbulence, in M. Rosenblatt and C. Van Atta eds., Statistical Models and Turbulence, New York, Springer.
Mandelbrot, B. B., 1997. Fractals And Scaling In Finance: Discontinuity, Concentration, Risk, New York, Springer-Verlag.
Mikosch, T. and Starica, C., 2000. Limit Theory for the Sample Autocorrelations and Extremes of a GARCH(1,1) process, Annals of Statistics, 28, 1427–1451.
Nath, G. C., 2001. Long Memory And Indian Stock Market – An Empirical Evidence, Proceedings of UTIICM Conference , India, 2001.
Pérez, A. and Ruiz, E., 2001. Finite sample properties of a QML Estimator of Stochastic Volatility models with long memory, Economics Letters, 70, 157–164.
Phillips, P.C.B. and Perron, P., 1988. Testing for a Unit Root in Time Series Regression, Biometrika, 75 (2), 335–346.
Sadique, S. and Silvapulle, P., 2001. Long-Term Memory in Stock Market Returns: International Evidence, International Journal of Finance & Economics, 6 (1), 59-67.
Willinger, W.; Taqqu, M.S. and Teverovsky, V., 1999. Stock Market Prices And Long-Range Dependence, Finance and Stochastics, 3, 1-13.
Taylor, S., 1986. Modelling Financial Time Series, New York. En: John Wiley & Sons. New York.
Yajima, Y., 1985. On Estimation Of Long-Memory Time Series Models, Australian Journal of Statistics, 27 (3), 303-320.
Sección
Artículos