Explorando la frontera: Aplicaciones generativas de la IA en el análisis del comportamiento de los consumidores en línea
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Resumen
Este artículo presenta una revisión sistemática de la aplicación de la IA generativa en el Análisis del Comportamiento del Consumidor Online (OCBA). Con la llegada del comercio electrónico y las redes sociales, el comportamiento de los consumidores se produce cada vez más en línea, lo que genera enormes cantidades de datos. Este cambio requiere herramientas analíticas avanzadas, y la IA generativa emerge como una tecnología fundamental. La IA generativa, distinta de la IA tradicional, puede generar de forma autónoma nuevos contenidos basados en patrones de datos aprendidos, ofreciendo enfoques innovadores a la OCBA. Basado en la metodología PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) y el método de síntesis de datos propuesto por Webster y Watson (2002), este estudio analiza 28 artículos revisados por pares, centrándose en cómo se aplica la IA generativa en OCBA y cómo puede mejorar el rendimiento de OCBA. Los resultados muestran que las redes generativas adversariales (GAN) son las más utilizadas, seguidas de los autocodificadores variacionales (VAE) y los modelos autorregresivos. La revisión clasifica las áreas de aplicación de la IA generativa en OCBA y examina cómo estas tecnologías mejoran la eficacia y la eficiencia de OCBA. Además, el artículo analiza los retos asociados a la IA generativa, haciendo hincapié en la necesidad de tener en cuenta cuestiones éticas como la parcialidad y la privacidad de los datos. Esta revisión contribuye a una comprensión más profunda del papel de la IA generativa en la OCBA, esbozando sus aplicaciones y funcionalidades desde una perspectiva técnica.
Cómo citar
##plugins.themes.bootstrap3.article.details##
Inteligencia artificial generativa, Redes generativas adversariales, Autocodificadores variacionales, Modelo autorregresivo, Transformador generativo preentrenado, Análisis del comportamiento del consumidor online
Almahmood, R. J. K., & Tekerek, A. (2022). Issues and solutions in deep learning-enabled recommendation systems within the e-commerce field. Applied Sciences, 12(21), 11256. https://doi.org/10.3390/app122111256
Anshari, M., Almunawar, M. N., Lim, S. A., & Al-Mudimigh, A. (2019) Customer relationship management and big data enabled: Personalization & customization of services. Applied Computing and Informatics, 15(2), 94-101. https://doi.org/10.1016/j.aci.2018.05.004
Ashfaq, M., Yun, J., Yu, S., & Loureiro, S. M. C. (2020). I, Chatbot: Modeling the determinants of users’ satisfaction and continuance intention of AI-powered service agents. Telematics and Informatics, 54, 101473. https://doi.org/10.1016/j.tele.2020.101473
Asperti, A., Evangelista, D., & Loli Piccolomini, E. (2021). A survey on variational autoencoders from a green AI perspective. SN Computer Science, 2(4), 301. https://doi.org/10.1007/s42979-021-00702-9
Baek, T. H. (2023). Digital advertising in the age of generative AI. Journal of Current Issues and Research in Advertising, 44(3), 249-251. https://doi.org/10.1080/10641734.2023.2243496
Bawack, R. E., Wamba, S. F., Carillo, K. D. A., & Akter, S. (2022). Artificial intelligence in e-commerce: A bibliometric study and literature review. Electronic Markets, 32(1), 297-338. https://doi.org/10.1007/s12525-022-00537-z
Bond-Taylor, S., Leach, A., Long, Y., & Willcocks, C. G. (2022). Deep generative modelling: A comparative review of vaes, gans, normalizing flows, energy-based and autoregressive models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11), 7327-7347. https://doi.org/10.1109/TPAMI.2021.3116668
Breen, R. L. (2006). A practical guide to focus-group research. Journal of Geography in Higher Education, 30(3), 463-475. https://doi.org/10.1080/03098260600927575
Casanova, A., Careil, M., Romero-Soriano, A., Pal, C. J., Verbeek, J., & Drozdzal, M. (2023). Controllable image generation via collage representations. arXiv preprint arXiv:2304.13722.
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321-357. https://doi.org/10.1613/jair.953
Deshai, N., & Bhaskara Rao, B. (2023). Unmasking deception: A CNN and adaptive PSO approach to detecting fake online reviews. Soft Computing, 27(16), 11357-11378. https://doi.org/10.1007/s00500-023-08507-z
Ding, Y., Kang, W., Feng, J., Peng, B., & Yang, A. (2023). Credit card fraud detection based on improved Variational Autoencoder Generative Adversarial Network. IEEE Access, 11, 83680-83691. https://doi.org/10.1109/ACCESS.2023.3302339
Du, C., Yu, F., Jiang, M., Hua, A., Wei, X., Peng, T., & Hu, X. (2023). Vton-scfa: A virtual try-on network based on the semantic constraints and flow alignment. IEEE Transactions on Multimedia, 25, 777-791. https://doi.org/10.1109/TMM.2022.3152367
Fincato, M., Cornia, M., Landi, F., Cesari, F., & Cucchiara, R. (2022). Transform, warp, and dress: A new transforma-tion-guided model for virtual try-on. ACM Transactions on Multimedia Computing, Communications, and Applications, 18(2), 1-24. https://doi.org/10.1145/3491226
Fiore, U., De Santis, A., Perla, F., Zanetti, P., & Palmieri, F. (2019). Using generative adversarial networks for improving classification effectiveness in credit card fraud detection. Information Sciences, 479, 448-455. https://doi.org/10.1016/j.ins.2017.12.030
Floridi, L., & Chiriatti, M. (2020). GPT-3: Its nature, scope, limits, and consequences. Minds and Machines, 30(4), 681-694. https://doi.org/10.1007/s11023-020-09548-1
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2020). Gen-erative adversarial networks. Communications of the ACM, 63(11), 139-144. https://doi.org/10.1145/3422622
Goti, A., Querejeta-Lomas, L., Almeida, A., de la Puerta, J. G., & López-de-Ipiña, D. (2023). Artificial intelligence in business-to-customer fashion retail: A literature review. Mathematics, 11(13), 2943. https://doi.org/10.3390/math11132943
Grove, S. J., & Fisk, R. P. (1992). Observational data collection methods for services marketing: An overview. Journal of the Academy of Marketing Science, 20(3), 217-224. https://doi.org/10.1007/BF02723408
Guo, D., Liu, Z., & Li, R. (2023). RegraphGAN: A graph generative adversarial network model for dynamic network anomaly detection. Neural Networks, 166, 273-285. https://doi.org/10.1016/j.neunet.2023.07.026
Guo, J., Zheng, C., Li, S., Jia, Y., & Liu, B. (2022). BiInfGCN: Bilateral information augmentation of graph convolutional networks for recommendation. Mathematics, 10(17), 3042. https://doi.org/10.3390/math10173042
Han, Y., Nanda, G., & Moghaddam, M. (2023). Attribute-sentiment-guided summarization of user opinions from online reviews. Journal of Mechanical Design, 145(4), 041402. https://doi.org/10.1115/1.4055736
Hao, Y., Zhao, D., Li, H., Ip, W. H., & Liu, Y. (2022). User Behavior Prediction Based on DCGAN: The Case of Sina Weibo. Journal of Internet Technology, 23(6), 1367-1376. https://doi.org/10.53106/160792642022112306019
Hu, K., Qiu, L., Zhang, S., Wang, Z., Fang, N., & Zhou, H. (2023). A novel neighbor selection scheme based on dynamic evaluation towards recommender systems. Science Progress, 106(2), 368504231180090. https://doi.org/10.1177/00368504231180090
Jiang, L. A., Yang, Z., & Jun, M. (2013). Measuring consumer perceptions of online shopping convenience. Journal of Service Management, 24(2), 191-214. https://doi.org/10.1108/09564231311323962
Kashyap, D. A. K., Sahu, I., & Kumar, D. A. (2022). Artificial intelligence and its applications in e-commerce —A review analysis and research agenda. Journal of Theoretical and Applied Information Technology, 100(24), 7347-7465.
Kimura, T. (2022). Customer churn prediction with hybrid resampling and ensemble learning. Journal of Management Information & Decision Sciences, 25(1).
Kimura, T. (2023). Assessment of personal values for data-driven human resource management. Data Science Journal, 22. https://doi.org/10.5334/dsj-2023-022
Kmet, L., M., Lee, R., C., Cook, L., & S. (2004). Standard quality assessment criteria for evaluating primary research papers from a variety of fields. Alberta Heritage Foundation for Medical Research (Alberta Heritage Foundation for Medical Research).
Kuhn, M., & Johnson, K. (2013). Applied predictive modeling (26th ed). Springer.
Laenen, K., & Moens, M. F. (2022). Learning explainable disentangled representations of e-commerce data by aligning their visual and textual attributes. Computers, 11(12), 182. https://doi.org/10.3390/computers11120182
Li, J., Zhang, J., Bah, M. J., Wang, J., Zhu, Y., Yang, G., Li, L., & Zhang, K. (2022). An auto-encoder with genetic algo-rithm for high dimensional data: Towards accurate and interpretable outlier detection. Algorithms, 15(11), 429. https://doi.org/10.3390/a15110429
Li, K., Zhang, J., & Forsyth, D. (2023). POVNet: Image-based virtual try-on through accurate warping and residual. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(10), 12222-12235. https://doi.org/10.1109/TPAMI.2023.3283302
Lu, X., Liu, J., Gan, S., Li, T., Xiao, Y., & Liu, Y. (2022). Recommendation model based on dynamic interest group identification and data compensation. IEEE Transactions on Network and Service Management, 19(1), 89-99. https://doi.org/10.1109/TNSM.2021.3112702
Lungu, A. J., Swinkels, W., Claesen, L., Tu, P., Egger, J., & Chen, X. (2021). A review on the applications of virtual real-ity, augmented reality and mixed reality in surgical simulation: an extension to different kinds of surgery. Expert Review of Medical Devices, 18(1), 47-62. https://doi.org/10.1080/17434440.2021.1860750
Margaris, D., Vassilakis, C., & Spiliotopoulos, D. (2022). On producing accurate rating predictions in sparse collaborative filtering datasets. Information, 13(6), 302. https://doi.org/10.3390/info13060302
Nabeel, M., Riaz, A., & Zhenyu, W. (2019). Cas-gans: An approach of dialogue policy learning based on gan and rl techniques. International Journal of Advanced Computer Science and Applications, 10(7). https://doi.org/10.14569/IJACSA.2019.0100766
Nallapati, R., Zhou, B., Gulcehre, C., & Xiang, B. (2016). Abstractive text summarization using sequence-to-sequence rnns and beyond. arXiv preprint arXiv:1602.06023.
Necula, S. C., & Păvăloaia, V. (2023). AI-driven recommendations: A systematic review of the state of the art in e-commerce. Applied Sciences, 13(9), 5531. https://doi.org/10.3390/app13095531
Ngai, E. W., & Wu, Y. (2022). Machine learning in marketing: A literature review, conceptual framework, and research agenda. Journal of Business Research, 145, 35-48. https://doi.org/10.1016/j.jbusres.2022.02.049
Nguyen, M. D., & Cho, Y. S. (2020). A variational autoencoder mixture model for online behavior recommendation. IEEE Access, 8, 132736-132747. https://doi.org/10.1109/ACCESS.2020.3010508
Notin, P., Hernández-Lobato, J. M., & Gal, Y. (2021). Improving black-box optimization in VAE latent space using decoder uncertainty. Advances in Neural Information Processing Systems, 34, 802-814.
Oshrat, Y., Aumann, Y., Hollander, T., Maksimov, O., Ostroumov, A., Shechtman, N., & Kraus, S. (2022). Efficient cus-tomer service combining human operators and virtual agents. arXiv preprint arXiv:2209.05226.
Pan, Z., Yu, W., Yi, X., Khan, A., Yuan, F., & Zheng, Y. (2019). Recent progress on generative adversarial networks (GANs): A survey. IEEE Access, 7, 36322-36333. https://doi.org/10.1109/ACCESS.2019.2905015
Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., & Lakshminarayanan, B. (2021). Normalizing flows for probabilistic modeling and inference. Journal of Machine Learning Research, 22(1), 2617-2680.
Perez-Castro, A., Martínez-Torres, M. R., & Toral, S. L. (2023). Efficiency of automatic text generators for online review content generation. Technological Forecasting and Social Change, 189, 122380. https://doi.org/10.1016/j.techfore.2023.122380
Policarpo, L. M., da Silveira, D. E., da Rosa Righi, R., Stoffel, R. A., da Costa, C. A., Barbosa, J. L. V., ... & Arcot, T. (2021). Machine learning through the lens of e-commerce initiatives: An up-to-date systematic literature review. Computer Science Review, 41, 100414. https://doi.org/10.1016/j.cosrev.2021.100414
Postolache, E., Mariani, G., Mancusi, M., Santilli, A., Cosmo, L., & Rodola, E. (2023). Latent autoregressive source separation. arXiv preprint arXiv:2301.08562.
Rabbi, M. F., Sultan, M. N., Hasan, M., & Islam, M. Z. (2023). Tribal dress identification using convolutional neural net-work. Journal of Information Hiding and Multimedia Signal Processing, 14(3), 72-80.
Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.
Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pretraining.
Rethlefsen, M. L., Kirtley, S., Waffenschmidt, S., Ayala, A. P., Moher, D., Page, M. J., & Koffel, J. B. (2021). PRISMA-S: An extension to the PRISMA statement for reporting literature searches in systematic reviews. Systematic Reviews, 10, 1-19.
Roy, D., Santra, S., & Chanda, B. (2022). LGVTON: A landmark guided approach for model to person virtual try-on. Multimedia Tools and Applications, 81(4), 5051-5087. https://doi.org/10.1007/s11042-021-11647-9
Sajid, S., Rashid, R. M., & Haider, W. (2022). Changing trends of consumers’ online buying behavior during COVID-19 pandemic with moderating role of payment mode and gender. Frontiers in Psychology, 13, 919334. https://doi.org/10.3389/fpsyg.2022.919334
Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of Research and Development, 3(3), 210-229. https://doi.org/10.1147/rd.33.0210
Singh, M., Bajpai, U., V., V., & Prasath, S. (2020). Generation of fashionable clothes using generative adversarial net-works: A preliminary feasibility study. International Journal of Clothing Science and Technology, 32(2), 177-187.
Sun, R., Dai, H., Li, L., Kearnes, S., & Dai, B. (2021). Towards understanding retrosynthesis by energy-based models. Advances in Neural Information Processing Systems, 34, 10186-10194.
Sun, Y., Wong, A. K. C., & Kamel, M. S. (2009). Classification of imbalanced data: A review. International Journal of Pattern Recognition and Artificial Intelligence, 23(4), 687-719. https://doi.org/10.1142/S0218001409007326
Terzioğlu, S., Çoğalmış, K. N., & Bulut, A. (2022). Ad creative generation using reinforced generative adversarial net-work. Electronic Commerce Research, 1-17. https://doi.org/10.1007/s10660-022-09564-6
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Atten-tion is all you need. Advances in Neural Information Processing Systems, 30.
Viktoratos, I., & Tsadiras, A. (2021). Personalized advertising computational techniques: A systematic literature review, findings, and a design framework. Information, 12(11), 480. https://doi.org/10.3390/info12110480
Wang, S., & Yang, Y. (2021). M-GAN-XGBOOST model for sales prediction and precision marketing strategy making of each product in online stores. Data Technologies and Applications, 55(5), 749-770. https://doi.org/10.1108/DTA-11-2020-0286
Wang, X. W., Chen, Y., & Liu, Y. Y. (2020). Link prediction through deep generative model. iScience, 23(10), 101626. https://doi.org/10.1016/j.isci.2020.101626
Webster, J., & Watson, R. T. (2002). Analyzing the past to prepare for the future: Writing a literature review. MIS Quar-terly, xiii-xxiii.
Wei, S., Zhou, X., An, X., Yang, X., & Xiao, Y. (2023). A heterogeneous e-commerce user alignment model based on data enhancement and data representation. Expert Systems with Applications, 228, 120258. https://doi.org/10.1016/j.eswa.2023.120258
Yang, Y., Ding, H., Liu, Q., & Quan, X. (2022). UBARv2: Towards mitigating exposure bias in task-oriented dialogs. arXiv preprint arXiv:2209.07239.
Yu, A., & Grauman, K. (2020). Densifying supervision for fine-grained visual comparisons. International Journal of Computer Vision, 128(10-11), 2704-2730. https://doi.org/10.1007/s11263-020-01344-9
Zhang, H., Sun, Y., Liu, L., & Xu, X. (2020). CascadeGAN: A category-supervised cascading generative adversarial network for clothes translation from the human body to tiled images. Neurocomputing. Cascade, 382, 148-161. https://doi.org/10.1016/j.neucom.2019.11.085
Zhang, H., Wang, X., Liu, L., Zhou, D., & Zhang, Z. (2020). Warpclothingout: A stepwise framework for clothes transla-tion from the human body to tiled images. IEEE Multimedia, 27(4), 58-68. https://doi.org/10.1109/MMUL.2020.3014037
Zhang, H., Wong, R. K., & Chu, V. W. (2021). Hybrid variational autoencoder for recommender systems. ACM Trans-actions on Knowledge Discovery from Data, 16(2), 1-37. https://doi.org/10.1145/3470659
Zhang, X., Sun, Y., & Liu, L. (2021). An improved generative adversarial network for translating clothes from the human body to tiled image. Neural Computing and Applications, 33(14), 8445-8457. https://doi.org/10.1007/s00521-020-05598-9
Zhao, J., Li, J., Liu, H., Yan, S., & Feng, J. (2020). Fine-grained multi-human parsing. International Journal of Computer Vision, 128(8-9), 2185-2203. https://doi.org/10.1007/s11263-019-01181-5
Zhou, X., Han, X., Li, H., Wang, J., & Liang, X. (2022). Cross-domain image retrieval: Methods and applications. International Journal of Multimedia Information Retrieval, 11(3), 199-218. https://doi.org/10.1007/s13735-022-00244-7
Los autores mantienen el copyright de la publicación. Las publicaciones en Cuadernos de Gestión se distribuyen bajo la licencia de Creative Commons -CC-BY-NC-ND, garantizando el acceso abierto a toda la sociedad.
En concreto la licencia CC-BY-NC-ND permite utilización, copia, distribución y comunicación pública de la obra, siempre que los autores y la fuente sean correctamente citados y no se utilice para propósitos comerciales.
El/la autor/a puede hacer libre uso de su artículo indicando siempre que el texto ha sido publicado en Management Letters/Cuadernos de Gestión y cualquier re-edición del mismo deberá contar con la autorización de la revista.