Advances of Artificial Intelligence in Organizational Project Management: A Systematic Literature Review
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Nicolás Sarache-Ossa
William Sarache
Mauricio Ospina-Fonseca
Abstract
Organizational project management (OPM) encompasses three key domains: program management, portfolio management, and project management (PM), in addition to organizational enablers. Research indicates increasing application of artificial intelligence (AI) technologies within OPM. However, an analysis of published literature reviews on the topic reveals significant advancements primarily within the PM domain, with limited progress observed in program management, portfolio management, and organizational enablers. Therefore, this study seeks to identify progress in AI applications across all three domains and organizational enablers within OPM to establish emerging trends and highlight future research opportunities. A systematic literature review was conducted utilizing the SCOPUS and Web of Science databases. After applying a series of filters, 87 publications were selected for analysis. The study identifies AI applications in four types of tasks related to OPM: routine, decision-making, judgment, and problem-solving. Results indicate that while application of AI technologies remains primarily focused on PM, there are new advancements in program and portfolio management. However, they occur mainly in operational processes; strategic aspects remain largely underdeveloped. Regarding organizational enablers, similar to the previously published review papers, no AI applications are reported. This study identifies organizational challenges and research opportunities in four main areas: data collection, development of algorithms tailored to project requirements, human resource management, and ethical practices.
How to Cite
- APA
- Chicago
- Harvard Download Citation
- Endnote/Zotero/Mendeley (RIS)
- BibTeX
##plugins.themes.bootstrap3.article.details##
Organizational Project Management, Artificial Intelligence, Project Management, Portfolio Management, Program Management
Agile-Business-Consortium. (2022). Agile Project Management Handbook. 978-0-9928727-4
Al-kfairy, M. (2025). Strategic Integration of Generative AI in Organizational Settings: Applications, Challenges and Adoption Requirements. IEEE Engineering Management Review, 1-14. https://doi.org/10.1109/EMR.2025.3534034
Alawamleh, M., Shammas, N., Alawamleh, K., & Bani Ismail, L. (2024). Examining the limitations of AI in business and the need for human insights using Interpretive Structural Modelling. Journal of Open Innovation: Technology, Market, and Complexity, 10(3), 100338. https://doi.org/10.1016/j.joitmc.2024.100338
Almahameed, B. A., & Bisharah, M. (2023). Applying Machine Learning and Particle Swarm Optimization for predictive modeling and cost optimization in construction project management. Asian Journal of Civil Engineering. https://doi.org/10.1007/s42107-023-00843-7
Alzeyani, E. M. M., & Szabó, C. (2024). Comparative Evaluation of Model Accuracy for Predicting Selected Attributes in Agile Project Management. Mathematics, 12(16), 2529. https://doi.org/10.3390/math12162529
Amato, A., Osterrieder, J. R., & Machado, M. R. (2024). How can artificial intelligence help customer intelligence for credit portfolio management? A systematic literature review. International Journal of Information Management Data Insights, 4(2), 100234. https://doi.org/https://doi.org/10.1016/j.jjimei.2024.100234
Antony-Ranesh, M. M., & Samuel, S. J. (2022). Information Technology (IT) Governance Process with Naïve Bayes algorithm to improve the success rate of the IT projects. Journal of Algebraic Statistics, 13(2).
Auth, G., Jöhnk, J., & Wiecha, D. A. (2021). A Conceptual Framework for Applying Artificial Intelligence in Project Management. 2021 IEEE 23rd Conference on Business Informatics (CBI), 01, 161-170. https://doi.org/10.1109/CBI52690.2021.00027
AWS. (2024). Amazon Web Service. https://aws.amazon.com/es/?nc2=h_lg
Axelos. (2017). PRINCE2 Handbook (Managing Successful Projects with PRINCE).
Babu, R. B., M., A., & Kumar, M. R. (2024). Predictive Analytics in Project Management for Outcome Prediction and Resource Optimization. African Journal of Biological Sciences (South Africa), 6, 1370–1390. https://doi.org/10.33472/AFJBS.6.Si2.2024.1381-1390
Bahi, A., Gharib, J., & Gahi, Y. (2024). Integrating Generative AI for Advancing Agile Software Development and Mitigating Project Management Challenges. International Journal of Advanced Computer Science and Applications(IJACSA), 15(3). https://doi.org/http://dx.doi.org/10.14569/IJACSA.2024.0150306
Bai, L., Zheng, K., Wang, Z., & Liu, J. (2022). Service provider portfolio selection for project management using a BP neural network. Annals of Operations Research, 308(1), 41-62. https://doi.org/10.1007/s10479-020-03878-0
Bakici, T., Nemeh, A., & Hazir, Ö. (2023). Big Data Adoption in Project Management: Insights From French Organizations. IEEE Transactions on Engineering Management, 70(10), 3358-3372. https://doi.org/10.1109/TEM.2021.3091661
Belharet, A., Bharathan, U., Dzingina, B., Madhavan, N., Mathur, C., Toti, Y.-D. B., Babbar, D., & Markowski, K. (2020). Report on the Impact of Artificial Intelligence on Project Management. Machine Learning EJournal, 53. https://doi.org/http://dx.doi.org/10.2139/ssrn.3660689
Bento, Pereira, L., Gonçalves, R., Álvaro Dias, A., & Costa, R. L. da. (2022). Artificial intelligence in project management: systematic literature review. International Journal of Technology Intelligence and Planning, 13(2), 143-163. https://doi.org/10.1504/IJTIP.2022.126841
Bilgin, G., Dikmen, I., Birgonul, M. T., & Ozorhon, B. (2022). A Decision Support System for Project Portfolio Management in Construction Companies. International Journal of Information Technology & Decision Making, 22(02), 705-735. https://doi.org/10.1142/S0219622022500821
Borges, A. F. S., Laurindo, F. J. B., Spínola, M. M., Gonçalves, R. F., & Mattos, C. A. (2021). The strategic use of artificial intelligence in the digital era: Systematic literature review and future research directions. International Journal of Information Management, 57, 102225. https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2020.102225
Briner, R. B., & Denyer, D. (2012). Systematic Review and Evidence Synthesis as a Practice and Scholarship Tool. In D. M. Rousseau (Ed.), The Oxford Handbook of Evidence-Based Management (p. 0). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199763986.013.0007
Chen, J.-H., Su, M.-C., Azzizi, V. T., Wang, T.-K., & Lin, W.-J. (2021). Smart Project Management: Interactive Platform Using Natural Language Processing Technology. In Applied Sciences (Vol. 11, Issue 4). https://doi.org/10.3390/app11041597
Chen, S. (2022). Construction Project Cost Management and Control System Based on Big Data. Mobile Information Systems, 2022, 7908649. https://doi.org/10.1155/2022/7908649
Choi, S.-W., Lee, E.-B., & Kim, J.-H. (2021). The Engineering Machine-Learning Automation Platform (EMAP): A Big-Data-Driven AI Tool for Contractors’ Sustainable Management Solutions for Plant Projects. In Sustainability (Vol. 13, Issue 18). https://doi.org/10.3390/su131810384
Choquehuanca-Sánchez, A. M., Kuzimoto-Saldaña, K. D., Muñoz-Huanca, J. R., Requena-Manrique, D. G., Trejo-Lozano, R. A., Vasquez- Martinez, J. I., Zenozain-Gara, E. G., &, & Marín Rodriguez, W. J. (2024). Emerging technologies in information systems project management. EAI Endorsed Transactions on Scalable Information Systems, 11(4).
Cinkusz, K., Chudziak, J. A., & Niewiadomska-Szynkiewicz, E. (2024). Cognitive Agents Powered by Large Language Models for Agile Software Project Management. Electronics, 14(1), 87. https://doi.org/10.3390/electronics14010087
Costantino, F., Di Gravio, G., & Nonino, F. (2015). Project selection in project portfolio management: An artificial neural network model based on critical success factors. International Journal of Project Management, 33(8), 1744-1754. https://doi.org/https://doi.org/10.1016/j.ijproman.2015.07.003
Dam, H. K., Tran, T., Grundy, J., Ghose, A., & Kamei, Y. (2019). Towards Effective AI-Powered Agile Project Management. 2019 IEEE/ACM 41st International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER), 41-44. https://doi.org/10.1109/ICSE-NIER.2019.00019
Ekanayake, B., Wong, J. K. W., Fini, A. A. F., Smith, P., & Thengane, V. (2024). Deep learning-based computer vision in project management: Automating indoor construction progress monitoring. Project Leadership and Society, 5, 100149. https://doi.org/https://doi.org/10.1016/j.plas.2024.100149
Elkholosy, H., Ead, R., Hammad, A., & AbouRizk, S. (2022). Data mining for forecasting labor resource requirements: a case study of project management staffing requirements. International Journal of Construction Management, 1-12. https://doi.org/10.1080/15623599.2022.2112898
Enholm, I. M., Papagiannidis, E., Mikalef, P., & Krogstie, J. (2022). Artificial Intelligence and Business Value: a Literature Review. Information Systems Frontiers, 24(5), 1709-1734. https://doi.org/10.1007/s10796-021-10186-w
Farouq, V. I. (2021). Using Artificial Intelligence and computation Enhanced apply in neural network. Journal of Applied Science and Engineering, 24(5), 763-770. https://doi.org/10.6180/jase.202110_24(5).0011
Felicetti, A. M., Cimino, A., Mazzoleni, A., & Ammirato, S. (2024). Artificial intelligence and project management: An empirical investigation on the appropriation of generative Chatbots by project managers. Journal of Innovation & Knowledge, 9(3), 100545. https://doi.org/https://doi.org/10.1016/j.jik.2024.100545
Ferreira de Araújo Lima, P., Crema, M., & Verbano, C. (2020). Risk management in SMEs: A systematic literature review and future directions. European Management Journal, 38(1), 78-94. https://doi.org/https://doi.org/10.1016/j.emj.2019.06.005
Fridgeirsson, T. V., Ingason, H. T., Jonasson, H. I., & Jonsdottir, H. (2021). An Authoritative Study on the Near Future Effect of Artificial Intelligence on Project Management Knowledge Areas. Sustainability, 13(4). https://doi.org/10.3390/su13042345
Ghapanchi, A. H., Tavana, M., Khakbaz, M. H., & Low, G. (2012). A methodology for selecting portfolios of projects with interactions and under uncertainty. International Journal of Project Management, 30(7), 791-803. https://doi.org/https://doi.org/10.1016/j.ijproman.2012.01.012
Gil-Ruiz, J., Martínez-Torres, J., & González-Crespo, R. (2020). The Application of Artificial Intelligence in Project Management Research: A Review. International Journal of Interactive Multimedia and Artificial Intelligence, 6(6). https://reunir.unir.net/bitstream/handle/123456789/12965/ijimai_6_6_6.pdf?sequence=1&isAllowed=y
Grabis, J., Haidabrus, B., Protsenko, S., Protsenko, I., & Rovna, A. (2019). Data science approach for it project management. ENVIRONMENT. TECHNOLOGIES. RESOURCES. Proceedings of the International Scientific and Practical Conference, 2. https://doi.org/10.17770/etr2019vol2.4163
Gramberg, T., Bauernhansl, T., & Eggert, A. (2024). Disruptive Factors in Product Portfolio Management: An Exploratory Study in B2B Manufacturing for Sustainable Transition. Sustainability, 16(11), 4402. https://doi.org/10.3390/su16114402
Guinhouya, K. A. (2023). Bayesian networks in project management: A scoping review. Expert Systems with Applications, 214, 119214. https://doi.org/https://doi.org/10.1016/j.eswa.2022.119214
Hanjing, Z., Bon-Gang, H., Jasmine, N., & San, T. J. P. (2022). Applications of Smart Technologies in Construction Project Management. Journal of Construction Engineering and Management, 148(4), 4022010. https://doi.org/10.1061/(ASCE)CO.1943-7862.0002260
Harish Kumar, K., & Srinivas, K. (2024). An improved analogy-rule based software effort estimation using HTRR-RNN in software project management. Expert Systems with Applications, 251, 124107. https://doi.org/https://doi.org/10.1016/j.eswa.2024.124107
Harnessing AI in entrepreneurial project management. (2024). Strategic Direction, 40(10), 14–16. https://doi.org/10.1108/SD-10-2024-0189
Hashfi, M. I., & Raharjo, T. (2023). Exploring the Challenges and Impacts of Artificial Intelligence Implementation in Project Management: A Systematic Literature Review. International Journal of Advanced Computer Science and Applications, 14(9), 366-376.
Holzmann, V., Shenhar, A., & Stefanovic, J. (2017). Strategic OPM: Why Companies Need to Adopt a Strategic Approach to Project Management. In N. Drouin, R. Müller, & S. Sankaran (Eds.), Cambridge Handbook of Organizational Project Management (pp. 33-43). Cambridge University Press. https://doi.org/DOI: 10.1017/9781316662243.006
Holzmann, V., Zitter, D., & Peshkess, S. (2022). The Expectations of Project Managers from Artificial Intelligence: A Delphi Study. Project Management Journal, 87569728211061780. https://doi.org/10.1177/87569728211061779
Huang, Y., Shi, Q., Zuo, J., Pena-Mora, F., & Chen, J. (2021). Research Status and Challenges of Data-Driven Construction Project Management in the Big Data Context. Advances in Civil Engineering, 2021(1), 6674980. https://doi.org/https://doi.org/10.1155/2021/6674980
Imeri, V., & Imeri, A. (2024). Application level of project management phases and the consequences of the war in Ukraine: A Case in the Republic of Kosovo. Quality - Access to Success, 25(199), 230-239. https://doi.org/10.47750/QAS/25.199.25
Indhujaa, S., & Jaisankar, S. (2024). Investigation on machine learning and natural language processing-based customers preference on wedding event and application of project management in managing wedding events. Journal of Environmental Protection and Ecology, 25(1), 210-222. https://scibulcom.net/en/article/4Usq8iZY0xhn9Q6TLVur
Iordache, C.-A., & Marian, C.-V. (2024). Project management expert system with advanced document management for public institutions. Revue roumaine des sciences techniques - Série électrotechnique et énergétique, 69(2), 219-224. https://doi.org/10.59277/RRST-EE.2024.2.17
ISO. (2012). ISO 21500:2012 Guiance on project management.
Jaafar, K., Watfa, M., & Aloran, A. (2022). Framework for a Predictive Progress Model – case of infrastructure projects. International Journal of Management Science and Engineering Management, 1-13. https://doi.org/10.1080/17509653.2022.2042749
Jaleel, F., Daim, T., & Giadedi, A. (2019). Exploring the impact of knowledge management (KM) best practices for project management maturity models on the project management capability of organizations. International Journal of Management Science and Engineering Management, 14(1), 47-52. https://doi.org/10.1080/17509653.2018.1483780
Jang, H. (2022). Predicting funded research project performance based on machine learning. Research Evaluation, 31(2), 257-270. https:// doi.org/10.1093/reseval/rvac005
Karim, M. A., Ong, T. S., Ng, S. H., Muhammad, H., & Ali, N. A. (2022). Organizational Aspects and Practices for Enhancing Organizational Project Management Maturity. Sustainability, 14(9). https://doi.org/10.3390/su14095113
Kiani, A. (2024). Artificial intelligence in entrepreneurial project management: a review, framework and research agenda. International Journal of Managing Projects in Business. https://doi.org/10.1108/IJMPB-03-2024-0068
Kim, H., & Jang, H. (2023). Predicting research projects’ output using machine learning for tailored projects management. Asian Journal of Technology Innovation, 1-18. https://doi.org/10.1080/19761597.2023.2243611
Kraiem, I. B. E. N., Mabrouk, M. B. E. N., & Jose, L. D. E. (2023). A Comparative Study of Machine Learning Algorithm for Predicting Project Management Methodology. Procedia Computer Science, 225, 665-675. https://doi.org/https://doi.org/10.1016/j.procs.2023.10.052
Krichevsky, Mikhail, Bydagov, Artyr, & Martynova, Julia. (2019). Assessment of the efficiency of educational project management using neuro-fuzzy system. E3S Web Conf., 110, 2070. https://doi.org/10.1051/e3sconf/201911002070
Li, W., Duan, P., & Su, J. (2021). The effectiveness of project management construction with data mining and blockchain consensus. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-020-02668-7
Liu, J. W. (2019). Using big data database to construct new GFuzzy text mining and decision algorithm for targeting and classifying customers. Computers & Industrial Engineering, 128, 1088-1095. https://doi.org/https://doi.org/10.1016/j.cie.2018.04.003
Liu, S., & Hao, W. (2021). Forecasting the scheduling issues in engineering project management: Applications of deep learning models. Future Generation Computer Systems, 123, 85-93. https://doi.org/https://doi.org/10.1016/j.future.2021.04.013
Lordache, C.A., & Marian, C.V. (2024). Project management expert system with advanced document management for public institutions. Revue roumaine des sciencies techniques -serie électrotechnique et énergétique, 69(2), 219-224.
Mahdi, M. N., Mohamed Zabil, M. H., Ahmad, A. R., Ismail, R., Yusoff, Y., Cheng, L. K., Azmi, M. S., Natiq, H., & Happala Naidu, H. (2021). Software Project Management Using Machine Learning Technique-A Review. In Applied Sciences (Vol. 11, Issue 11). https://doi.org/10.3390/app11115183
Merzouk, S., Gandoul, R., Marzak, A., & Sael, N. (2023). Toward new data for IT and IoT project management method prediction. Mathematical Modeling and Computing. https://api.semanticscholar.org/CorpusID:259056671
Mishra, A., Tripathi, A., & Khazanchi, D. (2023). A Proposal for Research on the Application of AI/ML in ITPM: Intelligent Project Management. International Journal of Information Technology Project Management (IJITPM), 14(1), 1-9. https://doi.org/10.4018/IJITPM.315290
Mohamad, A., Jordan, S. F., & M., S. I. (2021). Data-Driven Machine Learning Approach to Integrate Field Submittals in Project Scheduling. Journal of Management in Engineering, 37(1), 4020104. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000873
Mohite, R. ., Kanthe, R. ., Kale, K. S. ., Bhavsar, D. N. ., Murthy, D. N. ., &, & Murthy, R. A. D. . (2023). Integrating Artificial Intelligence into Project Management for Efficient Resource Allocation. International Journal of Intelligent Systems and Applications in Engineering, 12(4), 420-431. https://doi.org/https://ijisae.org/index.php/IJISAE/article/view/3800
Mostofi, F., Behzat Tokdemir, O., & Toğan, V. (2024). A decision-support productive resource recommendation system for enhanced construction project management. Advanced Engineering Informatics, 62, 102793. https://doi.org/10.1016/j.aei.2024.102793
Müller, R., & Klein, G. (2020). The COVID-19 Pandemic and Project Management Research. Project Management Journal, 51(6), 579-581. https://doi.org/10.1177/8756972820963316
Müller, R., Locatelli, G., Holzmann, V., Nilsson, M., & Sagay, T. (2024). Artificial Intelligence and Project Management: Empirical Overview, State of the Art, and Guidelines for Future Research. Project Management Journal, 55(1), 9-15. https://doi.org/10.1177/87569728231225198
Nenni, M. E., De Felice, F., De Luca, C., & Forcina, A. (2024). How artificial intelligence will transform project management in the age of digitization: a systematic literature review. Management Review Quarterly. https://doi.org/10.1007/s11301-024-00418-z
Niederman, F. (2021). Project management: openings for disruption from AI and advanced analytics. Information Technology & People, 34(6), 1570-1599. https://doi.org/10.1108/ITP-09-2020-0639
Ong, S., & Uddin, S. (2020). Data Science and Artificial Intelligence in Project Management: The Past, Present and Future. The Journal of Modern Project Management, 7.
Ongesa, T. N., Ugwu, O. P., Ugwu, C. N., Alum, E. U., Eze, V. H. U., Basajja, M., Ugwu, J. N., Ogenyi, F. C., Okon, M. B., &, & Ejemot-Nwadiaro, R. I. (2025). Optimizing emergency response systems in urban health crises: A project management approach to public health preparedness and response. Medicine, 104(3). https://doi.org/10.1097/MD.0000000000041279
Pakdaman, M., Abbasi, A., & Sankaran, S. (2021). Translating organisational strategies to projects using balanced scorecard and AHP: a case study. International Journal of Project Organisation and Management, 13(2), 111-134. https://doi.org/10.1504/IJPOM.2021.116262
Pantović, V., Vidojević, D., Vujičić, S., Sofijanić, S., & Jovanović- Milenković, M. (2024). Data-Driven Decision Making for Sustainable IT Project Management Excellence. In Sustainability (Vol. 16, Issue 7). https://doi.org/10.3390/su16073014
PMI. (2017a). Guía de los fundamentos para la dirección de proyectos. Guía del PMBOK (6th ed.).
PMI. (2017b). The standard for portfolio management. Fourth edition (4th ed.).
PMI. (2018). The standard for organizational project management.
PMI, I. (2017c). The Standard for program management. Fourth edition (4th ed.).
Portman, H. (2021). Chaos 2020: Beyond Infinity Overview. https://hennyportman.files.wordpress.com/2021/01/project-success-qrc-standish-group-chaos-report-2020.pdf
Pranckutė, R. (2021). Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. In Publications (Vol. 9, Issue 1). https://doi.org/10.3390/publications9010012
Prasad Agrawal, K. (2024). Towards Adoption of Generative AI in Organizational Settings. Journal of Computer Information Systems, 64(5), 636-651. https://doi.org/10.1080/08874417.2023.2240744
Prasetyo, M. L., Peranginangin, R. A., Martinovic, N., Ichsan, M., & Wicaksono, H. (2025). Artificial intelligence in open innovation project management: A systematic literature review on technologies, applications, and integration requirements. Journal of Open Innovation: Technology, Market, and Complexity, 11(1), 100445. https://doi.org/https://doi.org/10.1016/j.joitmc.2024.100445
Project_Management_Report. (2023). Top Project Management Statistics for 2023: Trends and Insights. Project Management Report.
Przegalinska, A., Triantoro, T., Kovbasiuk, A., Ciechanowski, L., Freeman, R. B., & Sowa, K. (2025). Collaborative AI in the workplace: Enhancing organizational performance through resource-based and task-technology fit perspectives. International Journal of Information Management, 81, 102853. https://doi.org/10.1016/j.ijinfomgt.2024.102853
Rabbani, M., Aramoon Bajestani, M., & Baharian Khoshkhou, G. (2010). A multi-objective particle swarm optimization for project selection problem. Expert Systems with Applications, 37(1), 315-321. https://doi.org/https://doi.org/10.1016/j.eswa.2009.05.056
Radhakrishnan, D. B., & Jaurez, J. J. (2021). Explainable Artificial Intelligence (XAI) in Project Management Curriculum: Exploration and Application to Time, Cost, and Risk. ASEE Virtual Annual Conference Content Access, 23. https://peer.asee.org/37135
Rezaei, M., Pironti, M., & Quaglia, R. (2024). AI in knowledge sharing, which ethical challenges are raised in decision-making processes for organisations? Management Decision. https://doi.org/10.1108/MD10-2023-2023
Sakka, A., Kourjieh, M., & Kraiem, I. Ben. (2023). An IT projects’ conceptual model to facilitate upstream decision-making: project management method selection. International Transactions in Operational Research, 30(6), 3687-3718. https://doi.org/https://doi.org/10.1111/itor.13231
Santos, J. I., Pereda, M., Ahedo, V., & Galán, J. M. (2023). Explainable machine learning for project management control. Computers & Industrial Engineering, 180, 109261. https://doi.org/https://doi.org/10.1016/j.cie.2023.109261
Senescall, M., & Low, R. K. (2024). Quantitative Portfolio Management: Review and Outlook. In Mathematics (Vol. 12, Issue 18). https://doi.org/10.3390/math12182897
Shang, G., Low, S. P., & Lim, X. Y. V. (2023). Prospects, drivers of and barriers to artificial intelligence adoption in project management. Built Environment Project and Asset Management, 13(5), 629-645. https://doi.org/10.1108/BEPAM-12-2022-0195
Sharma, S., & Goyal, P. K. (2019). Applying “Fuzzy Techniques” in Construction Project Management. International Journal on Emerging Technologies, 10(2), 384-391.
Si, J., Wan, C., Hou, L., Qu, Y., Lu, Y., Chen, T., & Yang, K. (2023). Self-Organizing Optimization of Construction Project Management Based on Building Information Modeling and Digital Technology. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 47(6), 4135-4143. https://doi.org/10.1007/s40996-023-01121-x
Singh, H. (2015). Project Management Analytics: A Data Driven Approach to Making Rational and Effective Project Decisions. Pearson FT Press.
Skinner, L. (2021). Using AI To Increase Project Management Maturity. ITNOW, 63(1), 22-23. https://doi.org/10.1093/itnow/bwab008
Sommer, L. (2024). Project management approaches and their selection in the digital age: Overview, challenges and decision models. Journal of Project Management, 9(2), 131-148.
Sutiene, K., Schwendner, P., Sipos, C., Lorenzo, L., Mirchev, M., Lameski, P., Kabasinskas, A., Tidjani, C., Ozturkkal, B., & Cerneviciene, J. (2024). Enhancing portfolio management using artificial intelligence: literature review. Frontiers Iin Artificial Intelligence, 7. https://doi.org/doi: 10.3389/frai.2024.1371502
Szalay, I., Kovács, Á., & Sebestyén, Z. (2017). Integrated Framework for Project Management Office Evaluation. Procedia Engineering, 196, 578-584. https://doi.org/https://doi.org/10.1016/j.proeng.2017.08.033
Taboada, I., Daneshpajouh, A., Toledo, N., & de Vass, T. (2023). Artificial Intelligence Enabled Project Management: A Systematic Literature Review. In Applied Sciences (Vol. 13, Issue 8). https://doi.org/10.3390/app13085014
Tariq, B., Ali, A., Khattak, M. S., Arfeen, M. I., Chaudhary, M. A. I., & Iqbal, F. (2024). Artificial intelligence and project management maturity: A study of selected project-based organizations in Pakistan. International Journal of ADVANCED AND APPLIED SCIENCES, 11(6), 106-117. https://doi.org/10.21833/ijaas.2024.06.012
Taye, G. D., & Feleke, Y. A. (2022). Prediction of failures in the project management knowledge areas using a machine learning approach for software companies. SN Applied Sciences, 4(6), 165. https://doi.org/10.1007/s42452-022-05051-7
Tereso, A., Fernandes, G., Araújo, M., Oliveira, C., Ruão, T., Lopes, A. I., & Faria, J. (2023). An integrated project management methodology under a social perspective in industrialisation projects. International Journal of Project Organisation and Management, 15(1), 1-30. https://doi.org/10.1504/IJPOM.2023.129379
Tereso, A., Ribeiro, P., Fernandes, G., Loureiro, I., & Ferreira, M. (2018). Project Management Practices in Private Organizations. Project Management Journal, 50(1), 6-22. https://doi.org/10.1177/8756972818810966
Tomaževič, N., Murko, E., & Aristovnik, A. (2024). Organisational Enablers of Artificial Intelligence Adoption in Public Institutions: A Systematic Literature Review. Central European Public Administration Review, 22(1), 109-138. https://doi.org/10.17573/cepar.2024.1.05
Tominc, P., Oreški, D., Čančer, V., & Rožman, M. (2024). Statistically Significant Differences in AI Support Levels for Project Management between SMEs and Large Enterprises. In AI (Vol. 5, Issue 1, pp. 136-157). https://doi.org/10.3390/ai5010008
Uriarte, S., Baier-Fuentes, H., Espinoza-Benavides, J., & Inzunza- Mendoza, W. (2025). Artificial intelligence technologies and entrepreneurship: a hybrid literature review. Review of Managerial Science. https://doi.org/10.1007/s11846-025-00839-4
Varajão, J., Fernandes, G., & Silva, H. (2020). Most used project management tools and techniques in information systems projects. Journal of Systems and Information Technology, 22(3), 225-242. https://doi.org/10.1108/JSIT-08-2017-0070
Velezmoro-Abanto, L., Cuba-Lagos, R., Taico-Valverde, B., Iparraguirre-Villanueva, O., &, & Cabanillas-Carbonell, M. (2024). Lean Construction Strategies Supported by Artificial Intelligence Techniques for Construction Project Management-A Review. International Journal of Online and Biomedical Engineering, 20(3), 99-114. https://doi.org/https://doi.org/10.3991/ijoe.v20i03.46769
Wang, Y.-R., Yu, C.-Y., & Chan, H.-H. (2012). Predicting construction cost and schedule success using artificial neural networks ensemble and support vector machines classification models. International Journal of Project Management, 30(4), 470-478. https://doi.org/https://doi.org/10.1016/j.ijproman.2011.09.002
Wei, R., & Ding, D. (2022). Problems and Countermeasures of Financial Risk in Project Management Based on Convolutional Neural Network. Computational Intelligence and Neuroscience, 2022, 1978415. https://doi.org/10.1155/2022/1978415
Wig, R., & Martinez, A. (2019). System and method of a requirement, active compliance, and resource management for cyber security application (Patent No. US2019/0394242A1).
Williams, R., Clark, L. A., Clark, W. R., & Raffo, D. M. (2021). Re-examining systematic literature review in management research: Additional benefits and execution protocols. European Management Journal, 39(4), 521-533. https://doi.org/https://doi.org/10.1016/j.emj.2020.09.007
Yamakawa, E. K., Cauchick-Miguel, P. A., Sousa-Zomer, T. T., & Killen, C. P. (2019). Project portfolio management: a landscape of the literature. International Journal of Business Excellence, 18(4), 450-487. https://doi.org/10.1504/IJBEX.2019.101529
Yang, L. (2024). Research on the application of big data technology in enterprise project management. Applied Mathematics and Nonlinear Sciences, 9(1), 1-13. https://doi.org/https://doi.org/10.2478/amns.2023.1.00331
Yang, Q., Bi, Y., Wang, Q., & Yao, T. (2021). Batch-based agile program management approach for coordinating IT multi-project concurrent development. Concurrent Engineering, 29(4), 343- 355. https://doi.org/10.1177/1063293X211015236
Zabala-Vargas, S., Jaimes-Quintanilla, M., & Jimenez-Barrera, M. H. (2023). Big Data, Data Science, and Artificial Intelligence for Project Management in the Architecture, Engineering, and Construction Industry: A Systematic Review. In Buildings (Vol. 13, Issue 12). https://doi.org/10.3390/buildings13122944
Zaidouni, A., Janati Idrissi, M. A., & Bellabdaoui, A. (2024). A Sugeno ANFIS Model Based on Fuzzy Factor Analysis for IS/IT Project Portfolio Risk Prediction. Journal of Information and Communication Technology, 23(2), 139-176. https://doi.org/https://doi.org/10.32890/jict2024.23.2.1
Zhang, Y., Bai, G., Gao, Z., Zhu, P., & Li, S. (2024). Modeling Long- and Short-Term Project Relationships for Project Management Systems. IEEE Access, 12, 72242-72251. https://doi.org/10.1109/ACCESS.2024.3402448
Authors retain copyright of its works. Management Letters/Cuadernos de Gestión publications are licensed under Creative Commons license CC-BY-NC-ND, granting open access rights to society.
Specifically, CC-BY-NC-ND license permits any kind of use, distribution, publicize and copy the article, as long as the original author and source are properly recognized and for Non Commercial purposes.
The author can use the article freely always indicating that it has been published in Management Letters/Cuadernos de Gestión. Any re-edition of the article must be approved by the journal editorial team.