La demanda de telefonía fija y móvil: Una aplicación de redes neuronales artificiales

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Publicado 18-09-2018
Andrés Milton Coca Carasila Juan Villagómez Méndez

Resumen

El catalogar a un determinado bien o servicio como una de las «extensiones de los sentidos y las funciones humanas de la vista, el oído y el tacto», muestra la importancia del papel que desempeñan en nuestras vidas, muestra el desarrollo que alcanzaron impulsadas por las mismas necesidades de los seres humanos, muestra un mercado dinámico e importante. El servicio de telefonía móvil o celular es el desencadenador de estas expresiones y además tema de comentario, investigación y preocupación de comunidades científicas y organismos internacionales como el World Economic Forum de Davos.
Con esta investigación nos adentramos en este mercado, en el que intervienen activamente la demanda y la oferta de servicios y equipos que no terminan de innovar, buscando satisfacer las, cada vez más, exigentes necesidades y deseos de los usuarios. Buscamos analizar, específicamente la demanda de telefonía fija y móvil, pretendiendo dilucidar una coyuntura particular y un futuro inmediato e incierto, sobre todo para el participante que sobrelleva las consecuencias, la telefonía fija. Para cuyo efecto proponemos aplicar técnicas novedosas que nos ayuda a este propósito, como son las Redes Neuronales Artificiales.

Cómo citar

Coca Carasila, A. M., & Villagómez Méndez, J. (2018). La demanda de telefonía fija y móvil: Una aplicación de redes neuronales artificiales. Cuadernos De Gestión, 9(2), 55–72. https://doi.org/10.5295/cdg.19100ac
Abstract 115 | PDF Downloads 110

##plugins.themes.bootstrap3.article.details##

Keywords

Redes neuronales artificiales, demanda, telefonía fija, telefonía móvil

References
BELL, D.K., DE TIENNE, D.H. y JOSHI, S.A. (2003): «Neural networks as statistical tools for business researchers», Organizational Research Methods, Vol. 6, Nº 2, pp. 236-265.
CIU (2009): Telefonía móvil. México: The Competitive Intelligence Unit
COFETEL (2006): Índice de producción del sector de telecomunicaciones. México: Cofetel.
COFETEL (2007): Dirección de Información Estadística de Mercados. México: Cofetel.
COCA, C.A.M. (2006, octubre): «Análisis de la demanda: Un enfoque de mercadotecnia». Ponencia presentada en el XI Foro de Investigación - Congreso Internacional de Contaduría, Administración e Informática, México D.F.
CTC (2004): Estimación de demanda: Informe de modificaciones e insistencias. Chile: Telefónica, Bayes Inference.
DENTON, J.W. (1995): «How good are neural networks for causal forecasting?», Journal of Business Forecasting Methods and Systems, Vol.14, Nº 2, pp. 17-21.
DIEBOLD, F. (2001): Elementos de pronósticos. México: Thomson Learning.
DINEEN, C. (2000, Julio): «Demand analysis and penetration forecasts for the mobile telephone market in the U.K.», Telecommunications: The Bridge to Globalization in the Information Society, XIII Conferencia de la Sociedad Internacional de Telecomunicaciones (ITS), Buenos Aires, Argentina.
DULIBA, K.A. (1991): «Contrasting neural nets with regression in predicting performance in the transportation industry», Proceedings of the 24th Annual Hawaii International Conference on System Sciences, 4, 163-170.
EUMED (2004): «Diccionario de economía y finanzas», Extraído el 18 mayo, 2005 de http://www.eumed.net/cursecon/dic/M.htm.
FRANK, R.H. (2001): Microeconomía y conducta (4ª ed.). España: McGraw-Hill/Interamericana de España.
GARCÍA, A.P. (2006): La evolución de las telecomunicaciones en México. México: Tecnológico de Monterrey, EGAP.
GHOSH, S. y RAO, C.R. (1996): Handbook of statistics 13: Design and analysis of experiments. The Netherlands: Elsevier Science B.V.
GLENN, J.C. (1999): Statistical modeling: From time series to simulation. En J. Glenn (Ed.), Futures Research Methodology Version 1.0, (Chapter 13). Washington DC: Millennium Project, World Federation of UN Associations.
GORDON, T.J. (1992): «The methods of futures research», The ANNALS of the American Academy of Political and Social Science, Vol. 522, Nº 1, pp. 36-44.
GRILICHES, Z. (1957): «Hybrid corn: An exploration in the economics of technical change», Econometrica, Vol. 25, Nº 4, pp. 501-522.
GRUBER, H. y VERBOVEN, F. (2001): «The evolution of markets under entry standards and regulation: The case of Global Mobile Telecommunications», International Journal of Industrial Organization, Vol. 19, Nº 7, pp. 1189-1212.
HOBBS, B.F., HELMAN, U., JITPRAPAIKULSARN, S., KONDA, S. y MARATUKULAM, D. (1998): «Artificial neural networks for short-term energy forecasting: Accuracy and economic value», Neurocomputing, Vol. 23, Nº 1-3, pp. 71-84.
HORNIK, K., STINCHCOMBE, M. y WHITE, H. (1989): Multilayer Feedforward Networks are Universal Approximators. Neural Networks, Vol. 2, Nº 5, pp. 359-366.
ISASI, V.P. y GALVAN, L.I.M. (2004): Redes de neuronas artificiales: Un enfoque práctico. Madrid: Pearson Prentice Hall.
JOHNSON, D.E. (1989): «Harnessing the power of multiple regression», Chemical Engineering, November, pp. 176-188.
JOSEPH, B., WANG, F.H. y SHIEH, S.S. (1992): «Exploratory data analysis: A comparison of statistical methods with artificial neural networks», Computers and Chemical Engineering, Vol. 16, Nº 4, pp. 413-423.
KEAT, P.G. y YOUNG, P.K. (2004): Economía de empresa (4ª ed.). México: Pearson Prentice Hall.
KINNEAR, T. y TAYLOR, J. (2000): Investigación de mercados: Un enfoque aplicado (5ª ed.). Colombia: McGRaw-Hill.
KOTLER, P. (1993): Dirección de la mercadotecnia: análisis, planeación, implementación y control (7ª ed.). México: Prentice Hall.
KOTLER, P. (1996): Dirección de la mercadotecnia: Análisis, planeación, implementación y control (8ª ed.). México: Prentice Hall.
KOTLER, P. (2000): Dirección de marketing: Edición del milenio (10ª ed.). Madrid: Pearson Prentice Hall.
KOTLER, P. (2002): Dirección de marketing: conceptos esenciales. México: Prentice Hall.
KOTLER, P. y ARMSTRONG, G. (2001): Marketing (8ª ed.). México: Prentice Hall.
KOTLER, P., ARMSTRONG, G., SAUNDERS, J. y WONG, V. (2000): Introducción al marketing (2ª ed.). Madrid: Prentice Hall.
KOTLER, P. y KELLER, K. (2006): Marketing management (12th ed.): New Jersey: Pearson.
KUO, C. y REITSCH, A. (1996): «Neural networks vs. Conventional methods of forecasting», The Journal of Business Forecasting. Winter, pp. 17 – 22.
LARRAÍN, B.F. y QUIROZ, C.J. (2003): Estimación de Demanda por servicios de telefonía móvil período 2004 – 2008. Chile: Telefónica Móvil.
LAW, R. (2000): «Back-propagation learning in improving the accuracy of neural network-based tourism demand forecasting», Tourism Management. Vol. 21, Nº 4, pp. 331 – 340.
LENDASSE, A., LEE, J., WERTZ, V. y VERLEYSEN, M. (2002): «Forecasting electricity consumption using nonlinear projection and self-organizing maps», Neurocomputing, Vol. 48, Nº 1-4, pp. 299-311.
LIESE, F. y MIESCKE, K.J. (2008): Statistical decision theory: Estimation, testing, and selection. New York: Springer.
LUGO, L.J.G. y ZURITA, G.J. (2004): «El costo social del monopolio de Telmex en la telefonía fija local», Análisis Económico, Vol. XIX, Nº 42, pp. 187-197.
MALLO, G.C. (2004): «Predicción de la demanda eléctrica horaria mediante redes neuronales artificiales». Recta, Vol. 5, Nº 1, pp. 5-28.
MÁRQUEZ, L., HILL, T., WORTHLEY, R. y REMUS, W. (1991): «Neural network models as an alternative to regression». Proceedings of the 24th Annual Hawaii International Conference on System Sciences, 4, 129-135.
MARTÍN DEL BRÍO, B. y SANZ, M.A. (2006): Redes neuronales y sistemas difusos (2ª ed.). Colombia: Alfaomega.
MARTÍN-MERINO, A.M. (2005): Técnicas neuronales y estadísticas para la predicción de demanda eléctrica. Salamanca: Amarú.
MENA, F.C. y MONTECINOS, G.R. (2006): «Comparación de redes neuronales y regresión linean para estimar productividad de sitio en plantaciones forestales, utilizando geomática», Bosque, Vol. 27, Nº 1, pp. 35-43.
NEWBERY, D.M. (1999): Privatization, restructuring and regulation of network utilities. EUA: MIT Press.
NGUYEN, N. y CRIPPS, A. (2001): «Predicting housing value: A comparison of multiple regression analysis and artificial neural networks», Journal of Real Estate Reasearch, Vol. 22, Nº 3, pp. 313-336.
OCDE (2007): OCDE communications Outlook 2007: Information and communications technologies. OCDE Publishing
OTERO, C.L.E. (2007): «Las telecomunicaciones en la España contemporánea, 1800-2000», Cuadernos de Historia Contemporánea, Vol. 29, pp. 119-152.
PALMER, P.A. y MONTAÑO, M.J.J. (2002): «Redes neuronales artificiales aplicadas al análisis de supervivencia: un estudio comparativo con el modelo de regresión de Cox en su aspecto predictivo», Psicothema, Vol. 14, Nº 3, pp. 630-636.
PÉREZ, L.C. (2005): Métodos estadísticos avanzados con SPSS. España: Thomson.
PÉREZ, D.M.L. y MARTÍN, M.Q. (2003): Aplicaciones de las redes neuronales artificiales a la estadística. Madrid: La Muralla, S.A.
PIEDRAS, E., BONINA, C. y VERUT, C. (2006): Contribuciones sociales y económicas de la telefonía móvil en México. México: CIDE.
PITA, B.P. y CADIMA, N. (2001): The impact of mobile phone diffusion on the fixed-link Network. Portugal: Universidade Nova de Lisboa y Portugal Telecom.
RODRÍGUEZ, S.G. (2000): Telecomunicación. Extraído el 10 mayo, 2007 de htt://www.fortunecity.es/imaginapoder/artes/368/escuela/telcom/telecomunicacion.htm.
RUMELHART, D.E. y MCCLELLAND, J.L. (1986): Parallel distributed processing. Vol.1, Cambridge, MA.: MIT Press.
SANTEMASES, M.M. (2005): Dyane. Versión 3: Diseño y análisis de encuestas en investigación social y de mercados. España: Ediciones Pirámide.
SANTESMASES, M. SÁNCHEZ, A. y VALDERREY F. (2003): Mercadotecnia: conceptos y estrategias. Madrid: Pirámide.
SEO, K.K. (1991): Managerial Economics. Text, Problems, and Short Cases (7ª ed.). Homewood, Boston: Irwin.
STATSOFT (2009): Statistica Automated Neural Networks. Extraído el 15 mayo, 2009 de http://www.statsoft.com/products/stat_nn.html.
STAUFFER, H.B. (2008): Contemporary bayesian and frequentist statistical research methods for natural resource scientists. New Jersey: John Wiley & Sons, Inc.
SUGOLOV, P. (2005): Are mobil phones and fixed lines substitutes or complements? Evidence from transition economies. Project submitted in partial fulfilment of the requirements for the degree of Master of Arts, Department of Economics, Simon Fraser University, Canada.
TANSINI, R. (2003): Guía para no economistas. Uruguay: Departamento de Economía, Facultad de Ciencias Sociales, Universidad de la República.
TAYLOR, L.D. (1994): Telecommunications demand in theory and practice. Boston: Kluwer Academic Publishers.
TAYLOR, L.D. (2000): Telecommunications demand analysis in transition: An overview of part I. En D. Loomis, y L. Taylor (Eds.), The Future of the Telecommunications Industry: Forecasting and demand analysis, (pp. 7–19). Germany: Springer-Verlag GmbH, Heidelberg.
THE WORLD BANK (2006): Information and communications for development 2006. Global trends and policies. Washington DC: The World Bank.
TISHLER, A., VENTURA, R. y WATTERS, J. (2001): «Cellular telephones in the Israeli market: The demand, the choice of provider and potential revenues», Applied Economics, Vol. 33, Nº 11, pp. 1479 – 1492.
WALKER, O., BOYD, H., MULLINS, J. y LARRÉCHÉ, J. (2003): Marketing strategy: a decision– focused approach (4th ed.). New York: McGraw-Hill.
WALTER, J.T. y LEVY, E. (1979): «Limitations in the logic of regression forecasting. American Statistical Association», Proceedings of the Business and Economic Statistics Section, 541-545.
WANG, C.S.G. (2008): «A guide to Box-Jenkins modeling», The Journal of Business Forecasting. Spring, pp. 19 – 28.
WEINGARTEN, M. y BENITO-MARTÍN, J.J. (1994): U.S. Telecommunications Demand: A macroeconomic view. USA: Monitor Telecom Advisory Services.
WEST, P.M., BROCKETT, P.L. y GOLDEN, L.L. (1997): «A comparative analysis of neural networks and statistical methods for predicting consumer choice», Marketing Science, Vol. 16, Nº 4, pp. 370-391.
WHITE. H. (1988): «Economic Prediction Using Neural Networks: The Case of IBM Daily Stock Returns», Proceedings of the Second Annual IEEE Conference on Neural Networks, II, 451-458.
WILSON, J.H. y KEATING, B. ( 2007): Pronósticos en los negocios con ForecastX basado en Excel (5ª ed.). México: McGraw – Hill.
ZHANG, G.P. (2004): «Business Forecasting with Artificial Neural Networks: An Overview». En P. Zhang (Ed.), Neural Networks in Business Forecasting (pp. 1-22). London: Idea Group Publishing.
Sección
Artículos