Optimización temporal de las señales automáticas proporcionadas por indicadores técnicos bursátiles
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Publicado
27-11-2020
Rodrigo Martín-García
Enrique Ventura Pérez Raquel Arguedas-Sanz
Enrique Ventura Pérez Raquel Arguedas-Sanz
Resumen
Los indicadores técnicos bursátiles transmiten al analista señales de compra/venta que, en el caso de ser ejecutadas en el momento de producirse, podrían no ser óptimas desde el punto de vista del resultado de la operación. El objetivo del presente trabajo es doble. En primer lugar, analizar la idoneidad del seguimiento de una batería de indicadores para la obtención de resultados en una cartera. En segundo lugar, estudiar cómo la introducción de retardos temporales entre las señales de los indicadores y la ejecución de las operaciones puede mejorar el resultado de la misma.Se ha realizado una simulación, para el intervalo 2005-2016, con 35 títulos y un índice, sobre 7 indicadores técnicos bursátiles (ROC, RSI, Cruce SMA, Cruce EMA, MACD, Bandas de Bollinger y oscilador estocástico) y un total de 81 combinaciones de retardos de compra/venta. La definición del modelo y la división en tres periodos no solapados genera un total de 61.236 carteras.Los resultados permiten concluir que existen combinaciones de indicador y retardos de compra/venta que proporcionan mejores resultados que la ejecución inmediata de la señal. Concretamente, se identifican retardos óptimos para RSI y cruce EMA que producen mejoras estadísticamente significativas en el resultado de una cartera de valores, independientemente del periodo estudiado.Estos resultados son consistentes con una simulación alternativa en la que se excluyó a los cinco activos más líquidos y de mayor capitalización, para descartar el posible efecto generado por el peso relativo de los valores en la rentabilidad de la cartera o en su normalización.
Cómo citar
Martín-García, R., Ventura Pérez, E., & Arguedas-Sanz, R. (2020). Optimización temporal de las señales automáticas proporcionadas por indicadores técnicos bursátiles. Cuadernos De Gestión, 20(3), 61–71. https://doi.org/10.5295/cdg.170851rm
##plugins.themes.bootstrap3.article.details##
Keywords
análisis técnico, estrategia de trading, bolsa de valores, retardos óptimos, RSI, cruce EMA
References
Achelis, S. B., 2001. Technical Analysis from A to Z. New York: McGraw Hill.
Agudelo D.A. and Uribe J.H., 2009. ¿Realidad o sofisma? Poniendo a prueba el análisis técnico en las acciones colombianas. Cuadernos de Administración, 22 (38), 189-217.
Australian Securities and Investments Commission, 2015. Review of high-frequency trading and dark liquidity. ASIC, 452.
Bessembinder, H. and Chan, K., 1998. Market efficiency and the returns to technical analysis. Financial management, 27, 5-17.
Brock, W., Lakonishok, J. and LeBaron, B., 1992. Simple technical trading rules and the stochastic properties of stock returns. The Journal of Finance, 47(5), 1731-1764.
Brown, D.P. and Jennings, R.H., 1989. On technical analysis. Review of Financial Studies, 2 (4), 527-551.
Cavalcante, R.C., Brasileiro, R.C., Souza, V.L., Nobrega, J.P. and Oliveira, A.L., 2016. Computational Intelligence and Financial Markets: A Survey and Future Directions. Expert Systems with Applications, 55, 194-211.
Cervelló-Royo, R., Guijarro, F. and Michniuk, K., 2015. Stock market trading rule based on pattern recognition and technical analysis: Forecasting the DJIA index with intraday data. Expert systems with Applications, 42 (14), 5963-5975.
Chaboud, A.P., Chiquoine, B., Hjalmarsson, E. and Vega, C., 2014. Rise of the machines: Algorithmic trading in the foreign exchange market. The Journal of Finance, 69 (5), 2045-2084.
Chang, P.C., Wang, Y.W. and Yang, W.N., 2004. An investigation of the hybrid forecasting models for stock price variation in Taiwan. Journal of the Chinese Institute of Industrial Engineers, 21 (4), 358-368.
Chong, T.T.L. and Ng, W.K., 2008. Technical analysis and the London stock exchange: testing the MACD and RSI rules using the FT30. Applied Economics Letters, 15 (14), 1111-1114.
Day, T.E. and Wang, P., 2002. Dividends, nonsynchronous prices, and the returns from trading the Dow Jones Industrial Average. Journal of Empirical Finance, 9 (4), 431-454.
European Securities and Markets Authority, 2015. Automated Trading Guidelines ESMA peer review among National Competent Authorities. Paris: ESMA/2015/592.
Fama, E.F. and Blume, M.E., 1966. Filter rules and stock-market trading. The Journal of Business, 39 (1), 226-241.
Fernandes, M., Hamberger, P. and do Valle, A., 2015. Technical analysis and financial market efficiency: an evaluation of the prediction powers of candlestick patterns. Revista evidenciãçao, contábil and finanças, 3 (3), 35-54.
Gerig, A., 2015. High-frequency trading synchronizes prices in financial markets. Available at SSRN 2173247.
Hudson, R., Dempsey, M. and Keasey, K., 1996. A note on the weak form efficiency of capital markets: The application of simple technical trading rules to UK stock prices-1935 to 1994. Journal of Banking & Finance, 20 (6), 1121-1132.
Ito, A., 1999. Profits on technical trading rules and time-varying expected returns: evidence from Pacific-Basin equity markets. Pacific-Basin Finance Journal, 7 (3), 283-330.
Jensen, M. and Bennington, G., 1970. Random walks and technical theories: Some additional evidences. Journal of Finance, 25 (2), 469-482.
Kara, Y., Boyacioglu, M.A. and Baykan, Ö.K., 2011. Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul Stock Exchange. Expert systems with Applications, 38 (5), 5311-5319.
Kim, H.J. and Shin, K.S., 2007. A hybrid approach based on neural networks and genetic algorithms for detecting temporal patterns in stock markets. Applied Soft Computing, 7 (2), 569-576.
Leigh, W., Modani, N., Purvis, R. and Roberts, T., 2002. Stock market trading rule discovery using technical charting heuristics. Expert Systems with Applications, 23 (2), 155-159
Lewis, M. and Baker, D., 2014. Flash boys: A Wall Street Revolt. New York: WW Norton.
Lim, M.A., 2015. The Handbook of Technical Analysis+ Test Bank: The Practitioner’s Comprehensive Guide to Technical Analysis. John Wiley & Sons.
Mills, T.C., 1997. Technical analysis and the London Stock Exchange: testing trading rules using the FT30. International Journal of Finance and Economics, 2 (4), 319-331.
Olson, D., 2004. Have trading rule profits in the currency markets declined over time? Journal of Banking and Finance 28 (1), 85-105.
Park, C.H. and Irwin, S.H., 2007. What do we know about the profitability of technical analysis? Journal of Economic Surveys, 21 (4), 786-826.
Ready, M.J., 2002. Profits from technical trading rules. Financial Management, 43-61.
Rodriguez-Gonzalez, A., Garcia-Crespo, A. and Colomo-Palacios, R., 2011. Using neural networks to improve trading systems based on technical analysis by means of the RSI financial indicator. Expert Systems with Applications, 38 (9), 11489-11500.
Rosillo, R., De la Fuente, D. and Brugos, J.A.L., 2013. Technical analysis and the Spanish stock exchange: testing the RSI, MACD, momentum and stochastic rules using Spanish market companies. Applied Economics, 45 (12), 1541-1550.
Rosillo, R., Giner, J. and De la Fuente, D., 2014. Stock Market simulation using support vector machines, Journal of Forecasting, 33 (6), 488-500.
Serbera, J.P. and Paumard, P., 2016. The fall of high-frequency trading: A survey of competition and profits. Research in International Business and Finance, 36, 271-287.
Taylor, M.P. and Allen, H., 1992. The use of technical analysis in the foreign exchange market. Journal of international Money and Finance, 11 (3), 304-314.
Taylor, N., 2014. The rise and fall of technical trading rule success. Journal of Banking & Finance, 40, 286-302.
Teixeira, L.A. and De Oliveira, A.L.I., 2010. A method for automatic stock trading combining technical analysis and nearest neighbor classification. Expert systems with applications, 37 (10), 6885-6890.
Wang, J.L. and Chan, S.H., 2007. Stock market trading rule discovery using pattern recognition and technical analysis. Expert Systems with Applications, 33 (2), 304-315.
Wang, J.Z., Wang, J.J., Zhang, Z.G. and Guo, S.P., 2011. Forecasting stock indices with back propagation neural network. Expert Systems with Applications, 38 (11), 14346-14355. doi:10.1016/j.eswa.2011.04.222.
Wang, L., An, H. and Liu, X., 2015. A PSO Approach to Search for Adaptive Trading Rules in the EUA Futures Market. Energy Procedia, 75, 2504-2509.
Yang, J., Zhou, Y. and Wang, Z., 2009. The stock–bond correlation and macroeconomic conditions: One and a half centuries of evidence. Journal of Banking & Finance, 33 (4), 670-680.
Agudelo D.A. and Uribe J.H., 2009. ¿Realidad o sofisma? Poniendo a prueba el análisis técnico en las acciones colombianas. Cuadernos de Administración, 22 (38), 189-217.
Australian Securities and Investments Commission, 2015. Review of high-frequency trading and dark liquidity. ASIC, 452.
Bessembinder, H. and Chan, K., 1998. Market efficiency and the returns to technical analysis. Financial management, 27, 5-17.
Brock, W., Lakonishok, J. and LeBaron, B., 1992. Simple technical trading rules and the stochastic properties of stock returns. The Journal of Finance, 47(5), 1731-1764.
Brown, D.P. and Jennings, R.H., 1989. On technical analysis. Review of Financial Studies, 2 (4), 527-551.
Cavalcante, R.C., Brasileiro, R.C., Souza, V.L., Nobrega, J.P. and Oliveira, A.L., 2016. Computational Intelligence and Financial Markets: A Survey and Future Directions. Expert Systems with Applications, 55, 194-211.
Cervelló-Royo, R., Guijarro, F. and Michniuk, K., 2015. Stock market trading rule based on pattern recognition and technical analysis: Forecasting the DJIA index with intraday data. Expert systems with Applications, 42 (14), 5963-5975.
Chaboud, A.P., Chiquoine, B., Hjalmarsson, E. and Vega, C., 2014. Rise of the machines: Algorithmic trading in the foreign exchange market. The Journal of Finance, 69 (5), 2045-2084.
Chang, P.C., Wang, Y.W. and Yang, W.N., 2004. An investigation of the hybrid forecasting models for stock price variation in Taiwan. Journal of the Chinese Institute of Industrial Engineers, 21 (4), 358-368.
Chong, T.T.L. and Ng, W.K., 2008. Technical analysis and the London stock exchange: testing the MACD and RSI rules using the FT30. Applied Economics Letters, 15 (14), 1111-1114.
Day, T.E. and Wang, P., 2002. Dividends, nonsynchronous prices, and the returns from trading the Dow Jones Industrial Average. Journal of Empirical Finance, 9 (4), 431-454.
European Securities and Markets Authority, 2015. Automated Trading Guidelines ESMA peer review among National Competent Authorities. Paris: ESMA/2015/592.
Fama, E.F. and Blume, M.E., 1966. Filter rules and stock-market trading. The Journal of Business, 39 (1), 226-241.
Fernandes, M., Hamberger, P. and do Valle, A., 2015. Technical analysis and financial market efficiency: an evaluation of the prediction powers of candlestick patterns. Revista evidenciãçao, contábil and finanças, 3 (3), 35-54.
Gerig, A., 2015. High-frequency trading synchronizes prices in financial markets. Available at SSRN 2173247.
Hudson, R., Dempsey, M. and Keasey, K., 1996. A note on the weak form efficiency of capital markets: The application of simple technical trading rules to UK stock prices-1935 to 1994. Journal of Banking & Finance, 20 (6), 1121-1132.
Ito, A., 1999. Profits on technical trading rules and time-varying expected returns: evidence from Pacific-Basin equity markets. Pacific-Basin Finance Journal, 7 (3), 283-330.
Jensen, M. and Bennington, G., 1970. Random walks and technical theories: Some additional evidences. Journal of Finance, 25 (2), 469-482.
Kara, Y., Boyacioglu, M.A. and Baykan, Ö.K., 2011. Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul Stock Exchange. Expert systems with Applications, 38 (5), 5311-5319.
Kim, H.J. and Shin, K.S., 2007. A hybrid approach based on neural networks and genetic algorithms for detecting temporal patterns in stock markets. Applied Soft Computing, 7 (2), 569-576.
Leigh, W., Modani, N., Purvis, R. and Roberts, T., 2002. Stock market trading rule discovery using technical charting heuristics. Expert Systems with Applications, 23 (2), 155-159
Lewis, M. and Baker, D., 2014. Flash boys: A Wall Street Revolt. New York: WW Norton.
Lim, M.A., 2015. The Handbook of Technical Analysis+ Test Bank: The Practitioner’s Comprehensive Guide to Technical Analysis. John Wiley & Sons.
Mills, T.C., 1997. Technical analysis and the London Stock Exchange: testing trading rules using the FT30. International Journal of Finance and Economics, 2 (4), 319-331.
Olson, D., 2004. Have trading rule profits in the currency markets declined over time? Journal of Banking and Finance 28 (1), 85-105.
Park, C.H. and Irwin, S.H., 2007. What do we know about the profitability of technical analysis? Journal of Economic Surveys, 21 (4), 786-826.
Ready, M.J., 2002. Profits from technical trading rules. Financial Management, 43-61.
Rodriguez-Gonzalez, A., Garcia-Crespo, A. and Colomo-Palacios, R., 2011. Using neural networks to improve trading systems based on technical analysis by means of the RSI financial indicator. Expert Systems with Applications, 38 (9), 11489-11500.
Rosillo, R., De la Fuente, D. and Brugos, J.A.L., 2013. Technical analysis and the Spanish stock exchange: testing the RSI, MACD, momentum and stochastic rules using Spanish market companies. Applied Economics, 45 (12), 1541-1550.
Rosillo, R., Giner, J. and De la Fuente, D., 2014. Stock Market simulation using support vector machines, Journal of Forecasting, 33 (6), 488-500.
Serbera, J.P. and Paumard, P., 2016. The fall of high-frequency trading: A survey of competition and profits. Research in International Business and Finance, 36, 271-287.
Taylor, M.P. and Allen, H., 1992. The use of technical analysis in the foreign exchange market. Journal of international Money and Finance, 11 (3), 304-314.
Taylor, N., 2014. The rise and fall of technical trading rule success. Journal of Banking & Finance, 40, 286-302.
Teixeira, L.A. and De Oliveira, A.L.I., 2010. A method for automatic stock trading combining technical analysis and nearest neighbor classification. Expert systems with applications, 37 (10), 6885-6890.
Wang, J.L. and Chan, S.H., 2007. Stock market trading rule discovery using pattern recognition and technical analysis. Expert Systems with Applications, 33 (2), 304-315.
Wang, J.Z., Wang, J.J., Zhang, Z.G. and Guo, S.P., 2011. Forecasting stock indices with back propagation neural network. Expert Systems with Applications, 38 (11), 14346-14355. doi:10.1016/j.eswa.2011.04.222.
Wang, L., An, H. and Liu, X., 2015. A PSO Approach to Search for Adaptive Trading Rules in the EUA Futures Market. Energy Procedia, 75, 2504-2509.
Yang, J., Zhou, Y. and Wang, Z., 2009. The stock–bond correlation and macroeconomic conditions: One and a half centuries of evidence. Journal of Banking & Finance, 33 (4), 670-680.
Número
Sección
Artículos
Los autores mantienen el copyright de la publicación. Las publicaciones en Cuadernos de Gestión se distribuyen bajo la licencia de Creative Commons -CC-BY-NC-ND, garantizando el acceso abierto a toda la sociedad.
En concreto la licencia CC-BY-NC-ND permite utilización, copia, distribución y comunicación pública de la obra, siempre que los autores y la fuente sean correctamente citados y no se utilice para propósitos comerciales.
El/la autor/a puede hacer libre uso de su artículo indicando siempre que el texto ha sido publicado en Management Letters/Cuadernos de Gestión y cualquier re-edición del mismo deberá contar con la autorización de la revista.