Improving guest satisfaction by identifying hotel service micro-elements failures through Deep Learning of online reviews

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published 21-03-2025
Sergey Kazakov
Pedro Cuesta-Valiño
Vera Butkouskaya
Daniel Muravsky

Abstract

This study thoroughly examines often-overlooked micro-service elements within the broader spectrum of hotel services, aiming to improve hospitality services and ensure guest satisfaction. To achieve this, this research developed a methodological framework, integrating (a) the VADER text sentiment analysis framework, (b) a robust logistic regression procedure to pinpoint specific hotel service components culprit for guest frustration, and (c) the application of semantic network analysis to yield guest insights contextualised within the realm of underperforming hotel service micro-elements.
Research findings highlight fifty specific service micro-elements identified as triggers of negative sentiment and subsequent degrees of diminished guest satisfaction. Furthermore, this study zooms into the top ten underperforming service micro-elements by employing semantic network analysis to uncover the roots of typical guest frustrations with their hotel experiences. Though identified within hotel reviews, certain service malfunctions have relevance within the broader domain of destination management.
The outcomes of this study suggest a valuable resource for managers in detecting and rectifying inadequately performing hotel service micro-elements, which are pivotal for elevating guest satisfaction within their respective hotel properties. Additionally, the findings provide impetus for hotel and destination managers to implement tailored strategies to increase guest satisfaction across hotels and destinations.

How to Cite

Kazakov, . S., Cuesta-Valiño, P., Butkouskaya, V., & Muravsky, . D. (2025). Improving guest satisfaction by identifying hotel service micro-elements failures through Deep Learning of online reviews. Cuadernos De Gestión, 25(1), 71–88. https://doi.org/10.5295/cdg.242191sk
Abstract 95 | PDF Downloads 45

##plugins.themes.bootstrap3.article.details##

Keywords

hotel service elements, online reviews, natural language processing, big data, tourist satisfaction policy, eWOM

References
Ahn, J., Back, K. J., Barišić, P., & Lee, C. K. (2020). Co-creation and integrated resort experience Croatia: The application of service-dominant logic. Journal of Destination Marketing and Management, 17, 100443. https://doi.org/10.1016/j.jdmm.2020.100443
Alam, S., & Yao, N. (2019). The impact of preprocessing steps on the accuracy of machine learning algorithms in sentiment analysis. Computational and. Mathematical Organization Theory, 25(3), 319-335. https://doi.org/10.1007/s10588-018-9266-8
Alnawas, I., & Hemsley-Brown, J. (2018). The differential effect of cognitive and emotional elements of experience quality on the customer-service provider's relationship. International Journal of Retail and Distribution Management, 46(2), 125-147. https://doi.org/10.1108/IJRDM-03-2017-0058
Alrawadieh, Z., & Law, R. (2019). Determinants of hotel guests' satisfaction from the perspective of online hotel review-ers. International Journal of Culture, Tourism and Hospitality Research, 13(1), 84-97. https://doi.org/10.1108/IJCTHR-08-2018-0104
Bachleda, C., & Berrada-Fathi, B. (2016). Is negative eWOM more influential than negative pWOM? Journal of Service. Theory and Practice, 26(1), 109-132. https://doi.org/10.1108/JSTP-11-2014-0254
Baltes, S., & Ralph, P. (2022). Sampling in software engineering research: A critical review and guidelines. Empirical Software Engineering, 27(4), 94. https://doi.org/10.1007/s10664-021-10072-8
Berezina, K., Bilgihan, A., Cobanoglu, C., & Okumus, F. (2016). Understanding satisfied and dissatisfied hotel custom-ers: Text mining of online hotel reviews. Journal of Hospitality Marketing and Management, 25(1), 1-24. https://doi.org/10.1080/19368623.2015.983631
Bueno, E. V., Weber, T. B. B., Bomfim, E. L., & Kato, H. T. (2019). Measuring customer experience in service: A system-atic review. The Service Industries Journal, 39(11-12), 779-798. https://doi.org/10.1080/02642069.2018.1561873
Butkouskaya, V., Romagosa, F., & Noguera, M. (2020). Obstacles to sustainable entrepreneurship amongst tourism students: A gender comparison. Sustainability, 12(5), 1812. https://doi.org/10.3390/su12051812
Caceres, R. C., & Paparoidamis, N. G. (2007). Service quality, relationship satisfaction, trust, commitment and busi-ness‐to‐business loyalty. European Journal of Marketing, 41(7/8). https://doi.org/10.1108/03090560710752429
Casalo, L. V., Flavian, C., Guinaliu, M., & Ekinci, Y. (2015). Do online hotel rating schemes influence booking behaviors? International Journal of Hospitality Management, 49, 28-36. https://doi.org/10.1016/j.ijhm.2015.05.005
Chang, Y. C., Ku, C. H., & Chen, C. H. (2020). Using deep learning and visual analytics to explore hotel reviews and responses. Tourism Management, 80, 104129. https://doi.org/10.1016/j.tourman.2020.104129
Chatterjee, S. (2020). Drivers of helpfulness of online hotel reviews: A sentiment and emotion mining approach. International Journal of Hospitality Management, 85, 102356. https://doi.org/10.1016/j.ijhm.2019.102356
Cooksey, R. W. (2020). Illustrating statistical procedures: Finding meaning in quantitative data. Springer Nature. https://doi.org/10.1007/978-981-15-2537-7_5
Cuesta-Valiño, P., Bolifa, F., & Núñez-Barriopedro, E. (2020). Sustainable, smart and Muslim-friendly tourist destina-tions. Sustainability, 12(5), 1778. https://doi.org/10.3390/su12051778
Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861-874. https://doi.org/10.1016/j.patrec.2005.10.010
Henche, B. G., Salvaj, E., & Cuesta-Valiño, P. (2020). A sustainable management model for cultural creative tourism ecosystems. Sustainability, 12(22), 9554. https://doi.org/10.3390/su12229554
Geetha, M., Singha, P., & Sinha, S. (2017). Relationship between customer sentiment and online customer ratings for hotels-An empirical analysis. Tourism Management, 61, 43-54. https://doi.org/10.1016/j.tourman.2016.12.022
Hu, F., Li, H., Liu, Y., & Teichert, T. (2020). Optimizing service offerings using asymmetric impact-sentiment-performance analysis. International Journal of Hospitality Management, 89, 102557. https://doi.org/10.1016/j.ijhm.2020.102557
Hu, M., & B, L. (2004). Mining opinion features in customer reviews. In Proceedings of AAAI Conference on Artificial Intelligence, 4, 755-760.
Hu, X., & Yang, Y. (2021). What makes online reviews helpful in tourism and hospitality? A bare-bones meta-analysis. Journal of. Hospitality Marketing and Management, 30(2), 139-158. https://doi.org/10.1080/19368623.2020.1780178
Huang, M., Xie, H., Rao, Y., Feng, J., & Wang, F. L. (2020). Sentiment strength detection with a context-dependent lexi-con-based convolutional neural network. Information Sciences, 520, 389-399. https://doi.org/10.1016/j.ins.2020.02.026
Huang, S., Liang, L. J., & Choi, H. C. (2022). How we failed in context: A text-mining approach to understanding hotel service failures. Sustainability, 14(5), 2675.
Hutto, C., & Gilbert, E. (2014). Vader: A parsimonious rule-based model for sentiment analysis of social media text. In Proceedings of the International AAAI Conference on Web and Social Media, 8(1), 216-225. https://doi.org/10.1609/icwsm.v8i1.14550
Israeli, A. A., Lee, S. A., & Bolden III, E. C. (2019). The impact of escalating service failures and internet addiction be-havior on young and older customers' negative eWOM. Journal of Hospitality and Tourism Management, 39, 150-157. https://doi.org/10.1016/j.jhtm.2019.04.006
Jang, S., & Lee, J. (2015). The Impact of Hotel Attributes on Online Hotel Reviews: An Analysis of Reviewer Comments. Journal of Hospitality Marketing & Management, 24(3), 289-312.
Khan, F. M., Khan, S. A., Shamim, K., Gupta, Y., & Sherwani, S. I. (2022). Analysing customers' reviews and ratings for online food deliveries: A text mining approach. International Journal of Consumer Studies, 1, 24. https://doi.org/10.1111/ijcs.12877
Kim, J., & Im, J. (2018). Proposing a missing data method for hospitality research on online customer reviews: An application of imputation approach. International Journal of Contemporary Hospitality Management, 30(11), 3250-3267. https://doi.org/10.1108/IJCHM-10-2017-0708
Kirilenko, A. P., Stepchenkova, S. O., Kim, H., & Li, X. (2018). Automated sentiment analysis in tourism: Comparison of approaches. Journal of Travel Research, 57(8), 1012-1025. https://doi.org/10.1177/0047287517729757
Kuruuzum, A., & Koksal, C. D. (2010). The impact of service quality on behavioral intention in hospitality industry. Inter-national journal of. Business and Management Studies, 2(1), 9-15.
Latinopoulos, D. (2020). Analysing the role of urban hotel location in guests' satisfaction. Anatolia, 31(4), 636-650. https://doi.org/10.1080/13032917.2020.1808489
Le, T. D., Robinson, L. J., & Dobele, A. R. (2023). eWOM processing from receiver perspective: Conceptualising the relationships. International Journal of Consumer Studies, 47(1), 434-450. https://doi.org/10.1111/ijcs.12864
Lee, B. Y., & Park, S. Y. (2019). The role of customer delight and customer equity for loyalty in upscale hotels. Journal of Hospitality and Tourism Management, 39, 175-184. https://doi.org/10.1016/j.jhtm.2019.04.003
Lee, C. H., & Cranage, D. A. (2014). Toward understanding consumer processing of negative online word-of-mouth communication: The roles of opinion consensus and organizational response strategies. Journal of Hospitality and Tourism Research, 38(3), 330-360 https://doi.org/10.1177/1096348012451455
Lee, M., Cai, Y., DeFranco, A., & Lee, J. (2020). Exploring influential factors affecting guest satisfaction: Big data and business analytics in consumer-generated reviews. Journal of Hospitality and Tourism Technology, 11(1), 137-153. https://doi.org/10.1108/JHTT-07-2018-0054
Lee, M., Lee, S., & Koh, Y. (2019). Multisensory experience for enhancing hotel guest experience: Empirical evidence from big data analytics. International Journal of Contemporary Hospitality Management, 31(11), 4313-4337. https://doi.org/10.1108/IJCHM-03-2018-0263
Liu, Y., Huang, K., Bao, J., & Chen, K. (2019). Listen to the voices from home: An analysis of Chinese tourists' senti-ments regarding Australian destinations. Tourism Management, 71, 337-347. https://doi.org/10.1016/j.tourman.2018.10.004
Luo, J., Huang, S., & Wang, R. (2021). A fine-grained sentiment analysis of online guest reviews of economy hotels in China. Journal of Hospitality Marketing and Management, 30(1), 71-95. https://doi.org/10.1080/19368623.2020.1772163
Maimaiti, M., Liu, Y., Luan, H., & Sun, M. (2021). Enriching the transfer learning with pre-trained lexicon embedding for low-resource neural machine translation. Tsinghua Science and Technology, 27(1), 150-163. https://doi.org/10.26599/TST.2020.9010029
Malina, M. A., Nørreklit, H. S., & Selto, F. H. (2011). Lessons learned: Advantages and disadvantages of mixed method research. Qualitative Research in Accounting and Management, 8(1), 59-71. https://doi.org/10.1108/11766091111124702
Mariani, M. M., Borghi, M., & Kazakov, S. (2019). The role of language in the online evaluation of hospitality service encounters: An empirical study. International Journal of Hospitality Management, 78, 50-58. https://doi.org/10.1016/j.ijhm.2018.11.012
Nie, R. X., Tian, Z. P., Wang, J. Q., & Chin, K. S. (2020). Hotel selection driven by online textual reviews: Applying a semantic partitioned sentiment dictionary and evidence theory. International Journal of Hospitality Management, 88, 102495. https://doi.org/10.1016/j.ijhm.2020.102495
Oh, M. M., & Kim, S. S. (2020). Dimensionality of ethnic food fine dining experience: An application of semantic network analysis. Tourism Management Perspectives, 35, 100719. https://doi.org/10.1016/j.tmp.2020.100719
Opoku, R. A., Atuobi-Yiadom, N., Chong, C. S., & Abratt, R. (2009). The impact of internal marketing on the perception of service quality in retail banking: A Ghanaian case. Journal of Financial Services Marketing, 13(4), 317-329. https://doi.org/10.1057/fsm.2008.26
Ostovskaya, A. A., & Pavlenko, I. G. (2018). Formation of the competitive strategy of development for regional tourist destinations. In F. L. Gaol, N. Filimonova, & V. Maslennikov (Eds.), Financial and Economic Tools Used in the World Hospitality Industry (pp. 161-165). CRC Press. https://doi.org/10.1201/9781315148762-31
Padma, P., & Ahn, J. (2020). Guest satisfaction & dissatisfaction in luxury hotels: An application of big data. International Journal of Hospitality Management, 84, 102318. https://doi.org/10.1016/j.ijhm.2019.102318
Parasuraman, A., V., Z., & L.L, B. (1985). A Conceptual Model of Service Quality and Its Implications for Future Re-search. Journal of Marketing, 49(4), 41-50. https://doi.org/10.1177/002224298504900403
Park, H., Kline, S. F., Kim, J., Almanza, B., & Ma, J. (2019). Does hotel cleanliness correlate with surfaces guests con-tact?". International Journal of Contemporary Hospitality Management, 31(7), 2933-2950. https://doi.org/10.1108/IJCHM-02-2018-0105
Park, J., & Lee, B. K. (2021). An opinion-driven decision-support framework for benchmarking hotel service. Omega, 103, 102415. https://doi.org/10.1016/j.omega.2021.102415
Peterson, C. H. (1975). The effects of clumping on sample evenness. The American Naturalist, 109(967), 373-377. https://doi.org/10.1086/283006
Phillips, P., Barnes, S., Zigan, K., & Schegg, R. (2017). Understanding the impact of online reviews on hotel perform-ance: an empirical analysis. Journal of travel research, 56(2), 235-249. https://doi.org/10.1177/0047287516636481
Popova, N. (2023, August 3). Top 100 City Destinations Index 2022 Highlights the Best Performers of the Year. Euro-monitor. https://www.euromonitor.com/article/top-100-city-destinations-index-2022-highlights-the-best-performers-of-the-year
Repovienė, R., & Pažėraitė, A. (2023). Content marketing towards customer value creation. International Journal of Internet Marketing and Advertising, 18(2-3), 263-285. https://doi.org/10.1504/IJIMA.2023.129666
Roy, S. (2018). Effects of customer experience across service types, customer types and time. Journal of Services Marketing, 32(4), 400-413. https://doi.org/10.1108/JSM-11-2016-0406
Saleh, F., & Ryan, C. (1992). Conviviality-A source of satisfaction for hotel guests? An application of the Servqual model. In P. Johnson & B.Thomas (Eds.), Choice and demand in tourism, 107-122. Mansell Publishing.
Sann, R., Lai, P. C., & Chen, C. T. (2021). Review papers on eWOM: prospects for hospitality industry. Anatolia, 32(2), 177-206. https://doi.org/10.1080/13032917.2020.1813183
Shin, S., Du, Q., Ma, Y., Fan, W., & Xiang, Z. (2021). Moderating effects of rating on text and helpfulness in online hotel reviews: An analytical approach. Journal of Hospitality Marketing and Management, 30(2), 159-177. https://doi.org/10.1080/19368623.2020.1778596
Son, Y., Kang, K., Choi, I., & Kim, J. (2022). The Determinants of Helpful Hotel Reviews: A Social Influence Perspective. Sustainability, 14(22), 14881. https://doi.org/10.3390/su142214881
Song, Y., Liu, K., Guo, L., Yang, Z., & Jin, M. (2022). Does hotel customer satisfaction change during the COVID-19? A perspective from online reviews. Journal of Hospitality and Tourism Management, 51, 132–138. https://doi.org/10.1016/j.jhtm.2022.02.027
Stamolampros, P., Korfiatis, N., Kourouthanassis, P., & Symitsi, E. (2019). Flying to quality: Cultural influences on online reviews. Journal of Travel Research, 58(3), 496-511. https://doi.org/10.1177/0047287518764345
Straka, M., Hajic, J., & Straková, J. (2016). UDPipe: Trainable pipeline for processing CoNLL-U files performing tokeni-zation, morphological analysis, pos tagging and parsing. In Proceedings of the Tenth International Conference on Language Resources and Evaluation, LREC'16) (pp. 4290-4297).
Straka, M., & Straková, J. (2017). Tokenizing, pos tagging, lemmatizing and parsing ud 2.0 with udpipe. In Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, 88-99. https://doi.org/10.18653/v1/K17-3009
Vargo, S. L., & Lusch, R. F. (2004). Evolving to a new dominant logic for marketing. Journal of Marketing, 68(1), 1-17. https://doi.org/10.1509/jmkg.68.1.1.24036
Vieira, B. M., Borges, A. P., & Vieira, E. P. (2023). The role of social networks for decision-making about tourism destinations. International Journal of Internet Marketing and Advertising, 18(1), 1-27. https://doi.org/10.1504/IJIMA.2023.128148
Wang, D., & Lu, L. (2017). The Impact of Hotel Characteristics on Online Hotel Reviews: Evidence from Chinese Domestic Hotels. Asia Pacific Journal of Tourism Research, 22(4), 375-393.
Wang, L., & Kirilenko, A. P. (2021). Do tourists from different countries interpret travel experience with the same feeling? Sentiment analysis of TripAdvisor reviews. In Information and Communication Technologies in Tourism 2021: Proceedings of the ENTER 2021 eTourism Conference, January 19-22, 2021 (pp. 294-301). Springer International Publishing. https://doi.org/10.1007/978-3-030-65785-7_27
Wong, E., Rasoolimanesh, S. M., & Sharif, S. P. (2020). Using online travel agent platforms to determine factors influencing hotel guest satisfaction. Journal of Hospitality and Tourism Technology, 11(3), 425-445. https://doi.org/10.1108/JHTT-07-2019-0099
Xie, K. L., Zhang, Z., & Zhang, Z. (2014). The business value of online consumer reviews and management response to hotel performance. International Journal of Hospitality Management, 43, 1-12. https://doi.org/10.1016/j.ijhm.2014.07.007
Yadav, M. L., & Roychoudhury, B. (2019). Effect of trip mode on opinion about hotel aspects: A social media analysis approach. International Journal of Hospitality Management, 80, 155-165. https://doi.org/10.1016/j.ijhm.2019.02.002
Yang, L., Li, Y., Wang, J., & Sherratt, R. S. (2020). Sentiment analysis for E-commerce product reviews in Chinese based on sentiment lexicon and deep learning. IEEE Access, 8, 23522-23530. https://doi.org/10.1109/ACCESS.2020.2969854
Ying, S., Chan, J. H., & Qi, X. (2020). Why are Chinese and North American guests satisfied or dissatisfied with hotels? An application of big data analysis. International Journal of Contemporary Hospitality Management, 32(10), 3249-3269. https://doi.org/10.1108/IJCHM-02-2020-0129
Zaibaf, M., Taherikia, F., & Fakharian, M. (2013). Effect of perceived service quality on customer satisfaction in hospitality industry. Gronroos' Service Quality Model Development. Journal of Hospitality Marketing and Management, 22(5), 490-504. https://doi.org/10.1080/19368623.2012.670893
Zarezadeh, Z. Z., Rastegar, R., & Xiang, Z. (2022). Big data analytics and hotel guest experience: A critical analysis of the literature. International Journal of Contemporary Hospitality Management, 34(6), 2320-2336. https://doi.org/10.1108/IJCHM-10-2021-1293
Zhu, L., Lin, Y., & Cheng, M. (2020). Sentiment and guest satisfaction with peer-to-peer accommodation: When are online ratings more trustworthy? International Journal of Hospitality Management, 86, 102369. https://doi.org/10.1016/j.ijhm.2019.102369
Section
Articles