Uncovering the receiver’s traits that moderate the effect of e-WOM valence on the purchase intentions of healthy food products

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published 21-03-2025
Lorena Carrete
Pilar Arroyo
Gricel Castillo

Abstract

This study applies the information integration theory (IIT) to explore how individuals simultaneously combine several stimuli —electronic word-of-mouth (e-WOM) valence, information source, and brand expectations— depending on four traits —consumption product frequency, social media use frequency, health consciousness and susceptibility to social influence— to form intentions toward health food brands products commented in social media. A 2×2×2 experiment was designed, and 200 Mexican consumers recruited online were randomly assigned to a high or null brand expectation condition before being exposed to a combination of positive or negative e-WOM published by a digital consumer or an influencer. According to the IIT, a multiplicative algebraic model describes how the receiver’s health consciousness, product category consumption frequency, and social media use moderate the relationship between e-WOM valence and consumers’ purchasing intention. The moderator effect of two experimental factors, the information source and the brand expectations, plus the moderator effect of the consumer social susceptibility were not empirically supported; however, brand expectations directly influenced the purchase intention. This study contributes to the online consumer behavior and e-WOM literature by examining the nonconscious or semiconscious processing of e-WOM valence when combined with other stimuli and how the effect of e-WOM valence changes depending on individual behaviors and traits.

How to Cite

Carrete, L., Arroyo, P., & Castillo, G. (2025). Uncovering the receiver’s traits that moderate the effect of e-WOM valence on the purchase intentions of healthy food products. Cuadernos De Gestión, 25(1), 103–119. https://doi.org/10.5295/cdg.242187lc
Abstract 42 | PDF Downloads 30

##plugins.themes.bootstrap3.article.details##

Keywords

e-WOM, social media, purchase intention, online consumer behavior, healthy food products

References
Ahadzadeh, A. S., Sharif, S. P., & Ong, F. S. (2018). Online health information seeking among women: the moderating role of health consciousness. Online Information Review, 42(1), 58-72. https://doi.org/10.1108/oir-02-2016-0066
Akdim, K. (2021). The influence of eWOM. Analyzing its characteristics and consequences, and future research lines. Spanish Journal of Marketing - ESIC, 25(2), 239-259. ISSN 2444-9695.
Ali, T., & Ali, J. (2020). Factors affecting the consumers’ willingness to pay for health and wellness food products. Journal of Agriculture and Food Research, 2, 100076. https://doi.org/10.1016/j.jafr.2020.100076
Amatulli, C., De Angelis, M., & Stoppani, A. (2019). Analyzing online reviews in hospitality: Data-driven opportunities for predicting the sharing of negative emotional content. Current Issues in Tourism, 22(15), 1904-1917. https://doi.org/10.1080/13683500.2019.1594723
Anderson, N. H. (1981). Foundations of Information Integration Theory. Academic Press, New York, NY.
Anderson, N. H. (2014). Contributions to Information Integration Theory. Volume 1: Cognition. Psychology Press, New York, NY. https://doi.org/10.4324/9781315807324
Anker, T., Sandoe, P., Kamin T., & Kappel, K. (2011). Health branding ethics. Journal of Business Ethics, 104(1), 33-45. https://doi.org/10.1007/s10551-011-0887-9
Audrezet, A., de Kerviler, G., & Moulard, J. G. (2020). Authenticity under threat: When social media influencers need to go beyond self-presentation. Journal of Business Research, 117, 557-569. https://doi.org/10.1016/j.jbusres.2018.07.008
Ayuzo del Valle, C., García, F., Musi Gómez, M., et al. (2022). Weight stigma in Mexico and front-of-package labeling. A systemic review. Salud Mental, 45(2), 81-87. https://doi.org/10.17711/sm.0185-3325.2022.011
Babić Rosario, A., De Valck, K., & Sotgiu, F. (2020). Conceptualizing the electronic word-of-mouth process: What we know and need to know about e-WOM creation, exposure, and evaluation. Journal of the Academy of Marketing Science, 48(3), 422-448. https://doi.org/10.1007/s11747-019-00706-1
Ballings, M., & Van den Poel, D. (2015). CRM in social media: Predicting increases in Facebook usage frequency. European Journal of Operational Research, 244(1), 248-260. https://doi.org/10.1016/j.ejor.2015.01.001
Barcelos, R. H., Dantas, D. C., & Sénécal, S. (2018). Watch your tone: How a brand's tone of voice on social media influences consumer responses. Journal of Interactive Marketing, 41, 60-80. https://doi.org/10.1016/j.intmar.2017.10.001
Bearden, W. O., Netemeyer, R. G., & Teel, J. E. (1989). Measurement of consumer susceptibility to interpersonal influ-ence. Journal of Consumer Research, 15(4), 473-481. https://doi.org/10.1086/209186
Blank, H., Walther, E., & Isemann, S. D. (2017). The past is a social construction: susceptibility to social influence in (mis)remembering. In Nash R. A. & Ost J. (Eds.), False and Distorted Memories (pp. 55–71). Routledge/Taylor and Francis Group. https://doi.org/10.4324/9781315736242
Browne, M. W. & Cudeck, R. (1993). Alternative ways of assessing model fit. In Bollen K. A. & Long J. S. (Eds.), Testing Structural Equation Models (pp. 136-162). Sage, Newbury Park, CA. https://doi.org/10.1177/0049124192021002005
Bughin, J., Doogan, J., & Vetvi, O. J. (2010, April 1). Assessing the impact of word-of-mouth marketing as well as its volume will help companies take better advantage of buzz. McKinsey Quarterly. https://www.mckinsey.com/capabilities/growth-marketing-and-sales/our-insights/a-new-way-to-measure-word-of-mouth-marketing#/
Bui, M., Kemp, E., & Hamilton, M. (2015). The power of promoting healthy brands: Familiarity in healthy product decision making. Journal of Promotion Management, 21(6), 739-759. https://doi.org/10.1080/10496491.2015.1088920
Carlson, B. D., & White, M. A. (2008). Enhancing stimulus integration in a consumer information processing system: A theoretical foundation. Marketing Management Journal, 18(2), 154-167. ISSN 1534-973X.
Castillo, G., Carrete, L. & Arroyo, P. (2022). Do health-brand fan pages satisfy their consumers’ desires? International Journal of Electronic Marketing and Retailing, 13(1), 83–104. https://doi.org/10.1504/ijemr.2022.119252
Chen, J., Teng, L., Yu, Y., & Yu, X. (2016). The effect of online information sources on purchase intentions between consumers with high and low susceptibility to informational influence. Journal of Business Research, 69(2), 467-475. https://doi.org/10.1016/j.jbusres.2015.05.003
Chevailer, J. A. & Mayzlin, D. (2006). The effect of word of mouth on sales: online book reviews. Journal of Marketing Research, 43(3), 345-354. https://doi.org/10.1509/jmkr.43.3.345
Chrysochou, P. (2010). Health food branding: The role of marketing mix elements and public discourse in conveying a healthy brand image. Journal of Marketing Communications, 16(1-2), 69-85. https://doi.org/10.1080/13527260903342787
Chu, S. C., & Kim, Y. (2011). Determinants of consumer engagement in electronic word-of-mouth (eWOM) in social networking sites. International Journal of Advertising, 30(1), 47-75. https://doi.org/10.2501/ija-30-1-047-075
Chu, S. C., & Kim, J. (2018). The current state of knowledge on electronic word-of-mouth in advertising research. International Journal of Advertising, 37(1), 1-13. https://doi.org/10.1080/02650487.2017.1407061
Clemente-Ricolfe, J. S., & Atienza-Sancho, P. (2019). Consumer perceptions of influencers’ sway over product purchasing. Comunicación y Sociedad, 16, e7296. https://doi.org/10.32870/cys.v2019i0.7296
Data Bridge Market Research (2023). Global Health and Wellness Food Market – Industry Trends and Forecast to 2031. https://www.databridgemarketresearch.com/reports/global-health-and-wellness-food-market
De Veirman, M., Cauberghe, V., & Hudders, L. (2017). Marketing through Instagram influencers: the impact of number of followers and product divergence on brand attitude. International Journal of Advertising, 36(5), 798-828. https://doi.org/10.1080/02650487.2017.1348035
De Pelsmacker, P., Dens, N., & Kolomiiets, A. (2018). The impact of text valence, star rating and rated usefulness in online reviews. International Journal of Advertising, 37(3), 340-359. https://doi.org/10.1080/02650487.2018.1424792
Drewnowski, A. (2010). The Nutrient Rich Foods Index helps to identify healthy, affordable foods. The American Journal of Clinical Nutrition, 91(4), 1095S-1101S. https://doi.org/10.3945/ajcn.2010.28450d
ESOMAR & GRBN (2015). ESOMAR/GRBN Guideline for online sample quality. https://www.esomar.org/uploads/public/knowledge-and-standards/codes-and-guidelines/ESOMAR-GRBN_Online-Sample-Quality-Guideline_February-2015.pdf
Fazzino, T. L., Rose, G. L., Pollack, S. M., & Helzer, J. E. (2015). Recruiting U.S. and Canadian college students via social media for participation in a web-based brief intervention study. Journal of Studies on Alcohol and Drugs, 76(1), 127–132. https://doi.org/10.15288/jsad.2015.76.127
Folkvord, F., Roes, E., & Bevelander, K. (2020). Promoting healthy foods in the new digital era on Instagram: an ex-perimental study on the effect of a popular real versus fictitious fit influencer on brand attitude and purchase inten-tions. BMC Public Health, 20(1), 1-8. https://doi.org/10.1186/s12889-020-09779-y
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. https://doi.org/10.2307/3151312
Gil de Zúñiga, H., Diehl, T., Huber, B., & Liu, J. (2017). Personality traits and social media use in 20 countries: How personality relates to frequency of social media use, social media news use, and social media use for social interaction. Cyberpsychology, Behavior, and Social Networking, 20(9), 540-552. https://doi.org/10.1089/cyber.2017.0295
Gomes, M. A., Marques, S., & Dias, Á. (2022). The impact of digital influencers’ characteristics on purchase intention of fashion products. Journal of Global Fashion Marketing, 13(3), 187–204. https://doi.org/10.1080/20932685.2022.2039263
Greenwood, D. N. (2013). Fame, Facebook, and Twitter: How attitudes about fame predict frequency and nature of social media use. Psychology of Popular Media Culture, 2(4), 222. https://doi.org/10.1037/ppm0000013
Grimmelt, A., Moulton, J., Chirag Pandya, C. & Snezhkova, N. (October 5, 2022). Hungry and confused: The winding road to conscious eating, McKinsey, https://www.mckinsey.com/industries/consumer-packaged-goods/our-insights/hungry-and-confused-the-winding-road-to-conscious-eating
Gross, J., & Wangenheim, F. V. (2018). The big four of influencer marketing. A typology of influencers. Marketing Review St. Gallen, 35(2), 30-38. ISSN 1865-7516.
Gupta, K., & Stewart, D.W. (1996). Customer satisfaction and customer behavior: the differential role of brand and category expectations. Marketing Letters, 7(3), 249-263. https://doi.org/10.1007/bf00435741
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate Data Analysis (7th ed.). Pearson Prentice Hall, Upper Saddle River.
Hartmann, C., Hieke, S., Taper, C., & Siegrist, M. (2018). European consumer healthiness evaluation of ‘Free-from’ labelled food products. Food Quality and Preference, 68, 377-388. https://doi.org/10.1016/j.foodqual.2017.12.009
Hem, L. E., De Chernatony, L., & Iversen, N. M. (2003). Factors influencing successful brand extensions. Journal of Marketing Management, 19(7-8), 781-806. https://doi.org/10.1080/0267257x.2003.9728237
Hennig-Thurau, T., Gwinner, K. P., Walsh, G., & Gremler, D. D. (2004). Electronic word-of-mouth via consumer-opinion platforms: What motivates consumers to articulate themselves on the internet? Journal of Interactive Marketing, 18(1), 38-52. https://doi.org/10.1002/dir.10073
Huete-Alcocer, N. (2017). A literature review of word of mouth and electronic word of mouth: Implications for consumer behavior. Frontiers in Psychology, 25(8), 1256. https://doi.org/10.3389/fpsyg.2017.01256. https://doi.org/10.3389/fpsyg.2017.01256
Liu, H., Shaalan, A., & Jayawardhena, C. (2022). The impact of electronic word-of-mouth (eWOM) on consumer behaviours. In The SAGE Handbook of Digital Marketing (pp. 136). SAGE Publications. https://doi.org/10.4135/9781529782509.n9
Jeong, H.-J. & Koo, D.-M. (2015). Combined effects of valence and attributes of e-WOM on consumer judgment for message and product: The moderating effect of brand community type. Internet Research, 25(1), 2-29. https://doi.org/10.1108/intr-09-2013-0199
Kaplan, A. M., Schoder, D., & Haenlein, M. (2007). Factors influencing the adoption of mass customization: The impact of base category consumption frequency and need satisfaction. Journal of Product Innovation Management, 24(2), 101-116. https://doi.org/10.1111/j.1540-5885.2007.00237.x
Karanges, E., Johnston, K. A., Lings, I., & Beatson, A. T. (2018). Brand signalling: An antecedent of employee brand understanding. Journal of Brand Management, 25(3), 235-249. https://doi.org/10.1057/s41262-018-0100-x
Krishnamurthy, A., & Kumar, S. R. (2018). Electronic word-of-mouth and the brand image: Exploring the moderating role of involvement through a consumer expectations lens. Journal of Retailing and Consumer Services, 43, 149-156. https://doi.org/10.1016/j.jretconser.2018.03.010
Lee, K. T. & Koo, D. M. (2012). Effects of attribute and valence of e-WOM on message adoption: Moderating roles of subjective knowledge and regulatory focus. Computers in Human Behavior, 28(5), 1974-1984. https://doi.org/10.1016/j.chb.2012.05.018
Lee, S. H., & Ro, H. (2016). The impact of online reviews on attitude changes: The differential effects of review attributes and consumer knowledge. International Journal of Hospitality Management, 56, 1-9. https://doi.org/10.1016/j.ijhm.2016.04.004
Lin, N. H., & Lin, B.S. (2007). The effect of brand image and product knowledge on purchase intention moderated by price discount. Journal of International Management Studies, 2(2), 121-132.
López, M., & Sicilia, M. (2014). Determinants of E-WOM influence: the role of consumers' internet experience. Journal of Theoretical and Applied Electronic Commerce Research, 9(1), 28-43. https://doi.org/10.4067/s0718-18762014000100004
Lou, C., & Yuan, S. (2019). Influencer marketing: how message value and credibility affect consumer trust of branded content on social media. Journal of Interactive Advertising, 19(1), 58-73. https://doi.org/10.1080/15252019.2018.1533501
Manchanda, P., Arora, N., & Sethi, V. (2022). Impact of Beauty Vlogger's Credibility and Popularity on eWOM Sharing Intention: The Mediating Role of Parasocial Interaction. Journal of Promotion Management, 28(3), 379-412. https://doi.org/10.1080/10496491.2021.1989542
Manganari, E. E., & Dimara, E. (2017). Enhancing the impact of online hotel reviews through the use of emoticons. Behaviour and Information Technology, 36(7), 674-686. https://doi.org/10.1080/0144929x.2016.1275807
Michaelidou, N., & Hassan, L. M. (2008). The role of health consciousness, food safety concern and ethical identity on attitudes and intentions towards organic food. International Journal of Consumer Studies, 32(2), 163-170. https://doi.org/10.1111/j.1470-6431.2007.00619.x
Mishra, A., & Maheswarappa, S. S. (2019). How content valence and online impression influence goal achievement in social media environment? Global Business Review, 20(5), 267-1281. https://doi.org/10.1177/0972150918793964
Nagaraj, S. (2020). Role of consumer health consciousness, food safety and attitude on organic food purchase in emerging market: A serial mediation model. Journal of Retailing and Consumer Services, 59, 102423. https://doi.org/10.1016/j.jretconser.2020.102423
Nielsen. (2022, mayo). Más cerca: Los influencers ayudan a las marcas a crear vínculos más personales con los con-sumidores. Nielsen. http://www.nielsen.com/us/en/press-room/2012/nielsen-global-consumers-trust-in-earned-advertising-grows.html
Oflaç, B. S., Sullivan, U. Y., & Baltacioğlu, T. (2012). An attribution approach to consumer evaluations in logistics cus-tomer service failure situations. Journal of Supply Chain Management, 48(4), 51-71. https://doi.org/10.1111/j.1745-493x.2012.03280.x
O’Reilly, K., MacMillan, A., Mumuni, A., & Lancendorfer, K. (2016). Extending our understanding of eWOM impact: The role of source credibility and message relevance. Journal of Internet Commerce, 15(2), 77-96. https://doi.org/10.1080/15332861.2016.1143215
Park, C. W., Mothersbaugh, D. L., & Feick, L. (1994). Consumer knowledge assessment. Journal of Consumer Re-search, 21(1), 71-82. https://doi.org/10.1086/209383
Park, C., Wang, Y., Yao, Y., & Kang, Y. (2011). Factors influencing eWOM effects: Using experience, credibility, and susceptibility. International Journal of Social Science and Humanity, 1(1), 74-79. https://doi.org/10.7763/ijssh.2011.v1.13
Park, S., & Nicolau, J. L. (2015). Asymmetric effects of online consumer reviews. Annals of Tourism Research, 50, 67-83. https://doi.org/10.1016/j.annals.2014.10.007
Perpetuini, D., Cardone, D., Filippini, C., Chiarelli, A. M., & Merla, A. (2019). Modeling impulse response function of functional infrared imaging for general linear model analysis of autonomic activity. Sensors, 19(4), 849. https://doi.org/10.3390/s19040849
Podsakoff, P.M., MacKenzie, S.B., Lee, J.-Y., & Podsakoff, N.P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies.” Journal of Applied Psychology, 88(5), 879–903. https://doi.org/10.1037/0021-9010.88.5.879
Putrevu, S., & Lord, K. R. (1994). Comparative and noncomparative advertising: Attitudinal effects under cognitive and affective involvement conditions. Journal of Advertising, 23(2), 77-91. https://doi.org/10.1080/00913367.1994.10673443
PYMNTS & Cybersource. (2022). The 2022 Global Digital Shopping Index. https://www.cybersource.com/content/dam/documents/campaign/shopping-index/global-digital-shopping-index-2022-mexico-edition-en-us.pdfPYMNTS%20and%20Cybersource
Rao, A. R., Qu, L., & Ruekert, R. W. (1999). Signaling unobservable product quality through a brand ally. Journal of Marketing Research, 36(2), 258-268. https://doi.org/10.1177/002224379903600209
Roy, G., Datta, B., & Mukherjee, S. (2019). Role of electronic word-of-mouth content and valence in influencing online purchase behavior. Journal of Marketing Communications, 25(6), 661-684. https://doi.org/10.1080/13527266.2018.1497681
Roy, G., Datta, B., Mukherjee, S., & Shrivastava, A. K. (2022). Systematic review of eWOM literature in emerging econ-omy using ACI framework. International Journal of Emerging Markets, 18(11), 5195-5216. https://doi.org/10.1108/ijoem-08-2021-1313
Sakib, M. N., Zolfagharian, M., & Yazdanparast, A. (2020). Does parasocial interaction with weight loss vloggers affect compliance? The role of vlogger characteristics, consumer readiness, and health consciousness. Journal of Retailing and Consumer Services, 52, 101733. https://doi.org/10.1016/j.jretconser.2019.01.002
Samson, A. (2010). Product usage and firm-generated word of mouth. Some results from FMCG product trials. International Journal of Market Research, 52(4), 459-482. https://doi.org/10.2501/s1470785309201405
Sánchez-Fernández, R., & Jiménez-Castillo, D. (2021). How social media influencers affect behavioural intentions towards recommended brands: the role of emotional attachment and information value. Journal of Marketing Management, 37(11-12), 1123-1147. https://doi.org/10.1080/0267257x.2020.1866648
Sen, S., & Lerman, D. (2007). Why are you telling me this? An examination into negative consumer reviews on the web. Journal of Interactive Marketing, 21(4), 76-94. https://doi.org/10.1002/dir.20090
Sénécal, S., & Nantel, J. (2004). The influence of online product recommendations on consumers’ online choices. Journal of Retailing, 80(2), 159-169. https://doi.org/10.1016/j.jretai.2004.04.001
Shabbir-Husain, R. V., & Varshney, S. (2022). Investigating combined effect of WOM and eWOM: role of message valence. Journal of Consumer Marketing, 39(2), 180-190. https://doi.org/10.1108/jcm-08-2020-4047
Shin, J., & Mattila, A. S. (2019). When organic food choices shape subsequent food choices: The interplay of gender and health consciousness. International Journal of Hospitality Management, 76, 94-101. https://doi.org/10.1016/j.ijhm.2018.04.008
Statista. (2023). Social media, statistics, and facts. Statista. https://www.statista.com/topics/1164/social-networks/#topicOverview
Stöckli, S., & Hofer, D. (2020). Susceptibility to social influence predicts behavior on Facebook. PloS one, 15(3), e0229337. https://doi.org/10.1371/journal.pone.0229337
Su, B. C., Wu, L. W., Lin, H., & Lin, C. A. (2023). The mediating effect of herd behavior and brand attitude towards the impact of spokesman credibility, source fit, and online word-of-mouth on purchase intention. Sustainability, 15(1), 888.
Sumaedi, S., & Sumardjo (2021). A model of traditional functional food consumption behaviour. British Food Journal, 123(1), 13-30. https://doi.org/10.1108/BFJ-01-2020-0019
Suttikun, C. (2021). “Where should we eat?”: How health consciousness moderates the influences driving intentions to purchase healthy food. Journal of International Food and Agribusiness Marketing, 1-29. https://doi.org/10.1080/08974438.2021.1980756
Teo, L.X., Leng, H.K., & Phua, Y.X.P. (2019). Marketing on Instagram: Social influence and image quality on perception of quality and purchase intention. International Journal of Sports Marketing and Sponsorship, 20(2), 321-332. https://doi.org/10.1108/ijsms-04-2018-0028
Tirunillai, S., & Tellis, G. J. (2014). Mining marketing meaning from online chatter: Strategic brand analysis of big data using latent Dirichlet allocation. Journal of Marketing Research, 51(4), 463-479. https://doi.org/10.1509/jmr.12.0106
Tkaczyk, J. (2015). Consumer susceptibility to social influence and tendency to generate a positive or negative message in word-of-mouth communication. Journal of International Conference on Marketing and Business Development, 1(1), 21-28. https://www.mbd.ase.ro/?p=83
Tsao, W. C. (2014). Which type of online review is more persuasive? The influence of consumer reviews and critic ratings on moviegoers. Electronic Commerce Research, 14(4), 559-583. https://doi.org/10.1007/s10660-014-9160-5
Valkenburg, P. M., & Peter, J. (2013). The differential susceptibility to media effects model. Journal of Communication, 63, 221–243. https://doi.org/10.1111/jcom.12024
Verma, S., & Yadav, N. (2021). Past, present, and future of Electronic Word of Mouth (EWOM). Journal of Interactive Marketing, 53(1), 111-128. https://doi.org/10.1016/j.intmar.2020.07.001
Verma, D., Dewani, P. P., Behl, A., & Dwivedi, Y. K. (2023). Understanding the impact of eWOM communication through the lens of information adoption model: A meta-analytic structural equation modeling perspective. Computers in Human Behavior, 143, 107710. https://doi.org/10.1016/j.chb.2023.107710
Wardle, J., & Steptoe, A. (2003). Socioeconomic differences in attitudes and beliefs about healthy lifestyles. Journal of Epidemiology and Community Health, 57(6), 440-443. https://doi.org/10.1136/jech.57.6.440
Whitler, K. (July 17, 2014). Why word of mouth marketing is the most important social media. Forbes. https://www.forbes.com/sites/kimberlywhitler/2014/07/17/why-word-of-mouth-marketing-is-the-most-important-social-media/?sh=1254d57454a8
Zaichkowsky, J. L. (1985). Familiarity: product use, involvement or expertise? In Elizabeth C. Hirschman and Moris B. Holbrook (Eds.), NA - Advances in Consumer Research Vol. 12 (pp. 296-299). Provo UT: Association for Consumer Research.
Zainal, N. T. A., Harun, A., & Lily, J. (2017). Examining the mediating effect of attitude towards electronic words-of mouth (eWOM) on the relation between the trust in eWOM source and intention to follow eWOM among Malaysian travellers. Asia Pacific Management Review, 22(1), 35-44. https://doi.org/10.1016/j.apmrv.2016.10.004
Zhou, S., & Guo, B. (2017). The order effect on online review helpfulness: A social influence perspective. Decision Support Systems, 93, 77-87. https://doi.org/10.1016/j.dss.2016.09.016
Zinko, R., Patrick, A., Furner, C. P., Gaines, S., Kim, M. D., Negri, M., & Villarreal, C. (2021). Responding to negative electronic word of mouth to improve purchase intention. Journal of Theoretical and Applied Electronic Commerce Research, 16(6), 1945-1959. https://doi.org/10.3390/jtaer16060109
Zou, P., Yu, B., & Hao, Y. (2011). Does the valence of online consumer reviews matter for consumer decision making? The moderating role of consumer expertise. Journal of Computers, 6(3), 484-488. https://doi.org/10.4304/jcp.6.3.484-488
Section
Articles