Automatismos y racionalidad en la toma de decisiones para sustituir a un deportista en momentos decisivos

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Publicado 18-09-2018
Jaime Gil Lafuente

Resumen

Cada vez más el deporte-espectáculo se está abriendo paso como objeto de estudio en los centros de investigación avanzada, como consecuencia de la necesidad de gestionar los altos presupuestos de las entidades deportivas. Vencer en un partido de fútbol o de baloncesto, por ejemplo, depende de muchos factores, casi todos estudiados minuciosamente. Se pone de manifi esto, sin embargo, que en uno de ellos la decisión se adopta de manera precipitada e intuitiva. Se trata de la sustitución de un jugador en juego por otro que debe entrar en la cancha para cumplir ciertos cometidos que el sustituido, por las razones que sea, no puede realizar. El entrenador se ve obligado, entonces, a tomar una decisión casi siempre bajo la presión del ambiente y del confl icto de sensaciones muchas veces contradictorias. En este trabajo proponemos un algoritmo de fácil utilización y aplicación para dar respuesta a la pregunta: ¿debe sustituirse un jugador? Y en caso afi rmativo, por cual de ellos debe hacerse la sustitución.

Cómo citar

Gil Lafuente, J. (2018). Automatismos y racionalidad en la toma de decisiones para sustituir a un deportista en momentos decisivos. Cuadernos De Gestión, 8(1), 39–58. https://doi.org/10.5295/cdg.19112jg
Abstract 92 | PDF Downloads 89

##plugins.themes.bootstrap3.article.details##

Keywords

Cierre de Moore, Convolución Maxmin, Deportista, Pretopología

References
ADÁMEK, J., HERRLICH, H. Y STRECKER, G.E. (1990). «Abstract and concrete categories the joy of cats». New York, Wiley.
BEER, G.: «TOPOLOGIES ON CLOSED AN CLOSED CONVEX SETS». KLUWER ACADEMIC PULISHERS, DORDRECHT.
BELMANDT, Z. Y FORTET, R.M. (1993). «Manuel de prétopologie et ses applications sciences humaines et sociales, réseaux, jeux, reconnaissance des formes, processus et modèles, classification, imagerie, mathématiques». Interdisciplinarité et nouveaux outils. Paris, Hermès.
BOLLE, G. Y DESBORDES, M. (2005). «Marketing et football: une perspective internationale». Paris, PUS (Presses Universitaires du Sport).
BOOLE, G. (1948). «The mathematical analysis of logic». Philosophical Library.
BOOLE, G. (1951). «An investigation of the laws of thought on which are founded the mathematical theories of logic and probabilities». New York, Dover Publications.
BRÜMMER, G.C.L. (1984). «Topological categories». Cape Town, Dept., Univ, (páginas 27 – 41).
CLEBSCH, A., ET AL. (1869). Mathematische Annalen. Berlin [etc.], J. Springer [etc.].
DAS, P. (1999). «A fuzzy topology associated with a fuzzy fi nite state machine». Fuzzy Sets and Systems. 105, (páginas 469 – 479).
DURU, G. (1977). «Nouveaux éléments de pretopologie». Besançon, Faculté de droit et des sciences économiques et politiques.
ERTÜRK, R. (1995). «Some results on fuzzy compacts spaces». Fuzzy Sets and Systems. 70, (páginas 107 – 112).
ETKIN, J. R. (2005). «Gestión de la complejidad en las organizaciones la estrategia frente a lo imprevisto y lo impensado». Buenos Aires, Argentina, Granica.
FRELICOT, C., LEBOURGEOIS, F. Y DE LYON, I. (1998). «A pretopology-based supervised pattern classifi er». Proceedings. 1, (páginas 106 y siguentes).
GALOIS, E. (1908). «Manuscrits de Évariste Galois» [Papiers et écrits mathématiques. ]. University of Michigan Historical Mathematics Collection. Paris, Gauthier-Villars.
GARCÍA MÁYNEZ, A. (1971). «Introducción a la topología de conjuntos». Serie Sociedad Matemática Mexicana, 4. México, Editorial Trillas.
GIL ALUJA Y GIL LAFUENTE, A.M. (2007). «Algoritmos para el tratamiento de fenómenos económicos complejos. Bases, desarrollos y aplicaciones». Madrid, Ramón Areces.
GIL ALUJA, J. (1999). «Elements for a theory of decision in uncertainty». Applied optimization, v. 32. Dordrecht, Kluwer Academic Publishers.
GIL ALUJA, J. (2001). «La pretopología en la gestión de la incertidumbre». Discurso de investidura como Doctor «Honoris Causa» por la Universidad de León. Publ. Universidad de León.
GIL LAFUENTE, J. (2001). «Model for the homogeneous gruping of the sales force». Proceedings del Congreso M.S.’2001. Changsha (Hunan) R.P. China.
GIL LAFUENTE, J. (2002). «Algoritmos para la excelencia. Claves para el éxito en la gestión deportiva». Vigo, Milladoiro.
GILES, J.R. (1987). «Introduction to the análisis of metric». Cambridge, Cambridge.
HÖHLE, U. (2001). «Many valued topology and its applications». Boston, Kluwer Academic Publishers.
HÖHLE, U., SOSTEK, A.: «AXIOMATIC FOUNDATIONS OF FIXED-BASIS FUZZY TOPOLOGY» EN HÖHLE, U., Y RODABAUGH, S.E. (1999). Mathematics of fuzzy sets logic, topology, and measure theory. Boston, Kluwer Academic Publishers, (páginas 123 – 272).
HUTTENLOCHER, D.P., KLANDERMAN, G.A., RUCKLIDGE, W.J. (1992). Comparing images using the Hausdorff distance, IEEE Trans. Pattern Anal Mach Intelligence 15, (páginas 850 – 863).
JAMESON, G.J.O. (1974). «Topology and normed spaces. London», Chapman and Hall; [Distributed by Halsted Press], New York.
JOHNSTONE, P.T. (1982). «Stone spaces». Cambridge studies in advanced mathematics, 3. Cambridge [Cambridgeshire], Cambridge University Press.
KAUFMANN, A. (1977). «Introduction à la théorie des sous-ensembles fl ous à l’usage des ingénieurs. applications à la linguistique, à la logique et à la sémantique». 4 Compléments et nouvelles applications. Paris, Masson.
KAUFMANN, A. (1983). «Prétopologie ordinaire et prétopologie fl oue». Note de Travail 115. La Tronche.
KAUFMANN, A. Y GIL ALUJA, J. (1991). «Selection of affi nities by means of fuzzy relations and Galois latices». Proceedings dek XI Euro O.R. Congress. Aachen.
KHEDR, F.H., ZEYADA, F.M., & SAYED, O.R. (2001). «On separation axioms in fuzzifying topology». Fuzzy Sets and Systems. 119, (páginas 439 – 458).
KISIELEWICZ, M. (1991). «Differential inclusions and optimal control». Dordrecht, Kluwer Academic.
KURATOWSKI, K. (1972). «Introducción a la teoría de los subconjuntos borrosos y a la topología». Vicens Vives. Barcelona.
LOWEN, R. (1978). «A comparison of different compactness notions in fuzzy topological spaces». J. Math Anal Appl. 64, (páginas 446 – 454).
MALIK, D.S., & MORDESON, J.N. (2000). «Fuzzy discrete structures». Heidelberg, Physica-Verlag.
MARTIN, H.W. (1980). «Weakly induced fuzzy topological spaces». J. Math. Anal Appl. 78, (páginas 634 – 639).
MENGER K. (1942). «Statistical Metrics». Proceedings of the National Academy of Sciences of the United States of America. 28, (páginas 535 – 537).
MUNROE, M. E. (1953). «Introduction to measure and integration». Addison-Wesley mathematics series. Cambridge, Mass, Addison-Wesley.
PONSARD, C. (1969). «Un Modèle topologique d’équilibre économique interrégional». Paris, Dunod.
PRALONG, G., PRALONG, G., & PRALONG, G. (1987). «Affaiblissement et extension de la structure d’espace topologique». Working papers / Institut des sciences économiques et sociales, Université de Fribourg, (páginas 111 y siguientes).
QIU, D. (2004). «Fuzzifying topological linear spaces». Fuzzy Sets and Systems. 147, (páginas 249 – 272).
RADABAUGH, S. E. (1980). «The Hausdorff separation axiom for fuzzy topological spaces». Toppology Appl. 11, (páginas 319 – 334).
ROY, B. (1970). «Procédures d’exploration P.S.E.P. et description segmentée». Paris, Dunod.
ROY, B. Y HORPS, M. (1969). «Algèbre moderne et théorie des graphes orientées vers les sciences économiques et sociales». Paris, Dunod.
SAPENA, A. (2001). «A contribution to the study of fuzzy metric spaces». Appl. Gen. Topology 2,(páginas 63 – 76).
SUGENO, M. (1977). «Fuzzy measures and fuzzy integrals, a survey». En Gupta M.M., Saridis, G.N. y Gaines, B.R. (Eds.): Fuzzy autómata and proceses. North-Holland Ámsterdam.
SUTHERLAND, W.A. (1987). «Introduction to metric and topological spaces». Oxford science publications. Oxford, Clarendon Press.
VEERAMANI, P. (2001). «Best approximation in fuzzy metric spaces». J. Fuzzy. Math 9, (páginas 75 – 80).
XIAO, J. Y ZHU, X. (2002). «On linearly topological structure and property of fuzzy normed linear space». Fuzzy Sets and Systems. 125, (páginas 153 – 161).
XIAO, J.Z. Y ZHU, X.H. (2004). «Topological degree theory and fi xed point theorems in fuzzy normed space». Fuzzy Sets and Systems. 147, (páginas 437 – 452).
YING, M. S. (1991). «A new approach to fuzzy topology (I)». Fuzzy Sets and Systems 39 (3), (páginas 303 – 321).
ZADEH, L. (1965). «Fuzzy Sets». Information and Control, 8 de Junio.
ZIMMERMANN, H. J. (1978). «Results of empirical studies in fuzzy sets theory» en KLIR, G.J.: INTERNATIONAL CONFERENCE ON APPLIED GENERAL SYSTEMS RESEARCH y KLIR, G.J. Applied general systems research recent developments and trends : [proceedings of the NATO international conference held in Binghamton, New York, August 15-19, 1977, sponsored by the NATO Special Program Panel on Systems Science. NATO conference series : II, Systems science, v. 5. New York, Plenum Press.
ZIMMERMANN, H.J. (1985). «Fuzzy set theory and its applications». International series in management science/operations research. Boston, Kluwer-Nijhoff Pub.
Sección
Artículos